A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multivariate joint order recurrence networks for characterization of multi-lead ECG time series from healthy and pathological heartbeat dynamics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Analysis of nonlinear dynamic characteristics of cardiac systems has been a hot topic of clinical research, and the recurrence plots have earned much attention as an effective tool for it. In this paper, we propose a novel method of multivariate joint order recurrence networks (MJORNs) to evaluate the multi-lead electrocardiography (ECG) time series with healthy and psychological heart states. The similarity between time series is studied by quantifying the structure in a joint order pattern recurrence plot. We take the time series that corresponds to each of the 12-lead ECG signals as a node in the network and use the entropy of diagonal line length that describes the complex structure of joint order pattern recurrence plot as the weight to construct MJORN. The analysis of network topology reveals differences in nonlinear complexity for healthy and heart diseased heartbeat systems. Experimental outcomes show that the values of average weighted path length are reduced in MJORN constructed from crowds with heart diseases, compared to those from healthy individuals, and the results of the average weighted clustering coefficient are the opposite. Due to the impaired cardiac fractal-like structures, the similarity between different leads of ECG is reduced, leading to a decrease in the nonlinear complexity of the cardiac system. The topological changes of MJORN reflect, to some extent, modifications in the nonlinear dynamics of the cardiac system from healthy to diseased conditions. Compared to multivariate cross recurrence networks and multivariate joint recurrence networks, our results suggest that MJORN performs better in discriminating healthy and pathological heartbeat dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0167477DOI Listing

Publication Analysis

Top Keywords

joint order
16
recurrence networks
16
time series
16
multivariate joint
12
order recurrence
8
ecg time
8
series healthy
8
healthy pathological
8
pathological heartbeat
8
heartbeat dynamics
8

Similar Publications