A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prevalence and implications of significance testing for baseline covariate imbalance in randomised cancer clinical trials: The Table 1 Fallacy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The 'Table 1 Fallacy' refers to the unsound use of significance testing for comparing the distributions of baseline variables between randomised groups to draw erroneous conclusions about balance or imbalance. We performed a cross-sectional study of the Table 1 Fallacy in phase III oncology trials.

Methods: From ClinicalTrials.gov, 1877 randomised trials were screened. Multivariable logistic regressions evaluated predictors of the Table 1 Fallacy.

Results: A total of 765 randomised controlled trials involving 553,405 patients were analysed. The Table 1 Fallacy was observed in 25% of trials (188 of 765), with 3% of comparisons deemed significant (59 of 2353), approximating the typical 5% type I error assertion probability. Application of trial-level multiplicity corrections reduced the rate of significant findings to 0.3% (six of 2345 tests). Factors associated with lower odds of the Table 1 Fallacy included industry sponsorship (adjusted odds ratio [aOR] 0.29, 95% confidence interval [CI] 0.18-0.47; multiplicity-corrected P < 0.0001), larger trial size (≥795 versus <280 patients; aOR 0.32, 95% CI 0.19-0.53; multiplicity-corrected P = 0.0008), and publication in a European versus American journal (aOR 0.06, 95% CI 0.03-0.13; multiplicity-corrected P < 0.0001).

Conclusions: This study highlights the persistence of the Table 1 Fallacy in contemporary oncology randomised controlled trials, with one of every four trials testing for baseline differences after randomisation. Significance testing is a suboptimal method for identifying unsound randomisation procedures and may encourage misleading inferences. Journal-level enforcement is a possible strategy to help mitigate this fallacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512581PMC
http://dx.doi.org/10.1016/j.ejca.2023.113357DOI Listing

Publication Analysis

Top Keywords

table fallacy
16
significance testing
8
table
5
prevalence implications
4
implications significance
4
testing baseline
4
baseline covariate
4
covariate imbalance
4
randomised
4
imbalance randomised
4

Similar Publications