Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this research, graphitic carbon nitride/zinc oxide-copper denoted as GCN/ZnO-Cu nanocomposite photocatalysts were synthesized using a novel facile synthesis process, the co-exfoliation method involving ultrasonic exfoliation of the mixture of GCN and ZnO-Cu in ethanol and then thermal exfoliation. Different characterization techniques such as X-ray diffraction (XRD), mean crystallite size (MCS), BET surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), particle size distribution (PSD), Fourier transform-infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) were conducted to study the crystallinity, morphology, elemental composition, chemical structure, and optoelectronic properties. The band gap was estimated using the UV-Vis DRS results and Tauc plots. The photocatalytic activity of the GCN/ZnO-Cu3% nanocomposites was evaluated in the degradation of 4-chlorophenol (4-CP), and the disinfection of wastewater primary influent under a narrowband visible light source, royal blue LED (λ = 450 nm). GCN/0.1ZnO-Cu3% nanocomposite showed the best performance in the degradation of 4-CP and the disinfection of municipal wastewater primary influent. For 4-CP degradation, GCN/0.1ZnO-Cu3% was 2.2 times better than GCN, 9.4 times better than ZnO-Cu3%, and 1.8 times better than the sum of the individual GCN and ZnO-Cu3%. A 5.5 log reduction was achieved for the disinfection of total coliforms in wastewater primary influent in 360 min. This enhanced photocatalytic activity of GCN/ZnO-Cu3% nanocomposite can be attributed to the synergistic of GCN and the ZnO-Cu3%, resulting in a large surface area and improved bandgap.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140287 | DOI Listing |