Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Molecular self-assembly in water leads to nanostructure geometries that can be tuned owing to the highly dynamic nature of amphiphiles. There is growing interest in strongly interacting amphiphiles with suppressed dynamics, as they exhibit ultrastability in extreme environments. However, such amphiphiles tend to assume a limited range of geometries upon self-assembly due to the specific spatial packing induced by their strong intermolecular interactions. To overcome this limitation while maintaining structural robustness, we incorporate rotational freedom into the aramid amphiphile molecular design by introducing a diacetylene moiety between two aramid units, resulting in diacetylene aramid amphiphiles (D-AAs). This design strategy enables rotations along the carbon-carbon hybridized bonds of an otherwise fixed aramid domain. We show that varying concentrations and equilibration temperatures of D-AA in water lead to self-assembly into four different nanoribbon geometries: short, extended, helical, and twisted nanoribbons, all while maintaining robust structure with thermodynamic stability. We use advanced microscopy, X-ray scattering, spectroscopic techniques, and two-dimensional (2D) NMR to understand the relationship between conformational freedom within strongly interacting amphiphiles and their self-assembly pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c04598 | DOI Listing |