A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The impact of misclassification errors on the performance of biomarkers based on next-generation sequencing, a simulation study. | LitMetric

The impact of misclassification errors on the performance of biomarkers based on next-generation sequencing, a simulation study.

J Biopharm Stat

Office of Data, Analytics and Research, Office of Digital Transformation, Office of Commissioner, FDA, Maryland, USA.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of next-generation sequencing (NGS) opens opportunities for new applications such as liquid biopsy, in which tumor mutation genotypes can be determined by sequencing circulating tumor DNA after blood draws. However, with highly diluted samples like those obtained with liquid biopsy, NGS invariably introduces a certain level of misclassification, even with improved technology. Recently, there has been a high demand to use mutation genotypes as biomarkers for predicting prognosis and treatment selection. Many methods have also been proposed to build classifiers based on multiple loci with machine learning algorithms as biomarkers. How the higher misclassification rate introduced by liquid biopsy will affect the performance of these biomarkers has not been thoroughly investigated. In this paper, we report the results from a simulation study focused on the clinical utility of biomarkers when misclassification is present due to the current technological limit of NGS in the liquid biopsy setting. The simulation covers a range of performance profiles for current NGS platforms with different machine learning algorithms and uses actual patient genotypes. Our results show that, at the high end of the performance spectrum, the misclassification introduced by NGS had very little effect on the clinical utility of the biomarker. However, in more challenging applications with lower accuracy, misclassification could have a notable effect on clinical utility. The pattern of this effect can be complex, especially for machine learning-based classifiers. Our results show that simulation can be an effective tool for assessing different scenarios of misclassification.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2023.2269251DOI Listing

Publication Analysis

Top Keywords

liquid biopsy
16
clinical utility
12
performance biomarkers
8
next-generation sequencing
8
simulation study
8
mutation genotypes
8
machine learning
8
learning algorithms
8
misclassification
6
biomarkers
5

Similar Publications