98%
921
2 minutes
20
Recently, charge or spin nonlinear transport with nontrivial topological properties in crystal materials has attracted much attention. In this paper, we perform a comprehensive symmetry analysis for all 122 magnetic point groups (MPGs) and provide a useful dictionary for charge and spin nonlinear transport from the Berry curvature dipole, Berry connection polarizability and Drude term with nontrivial topological nature. The results are obtained by conducting a full symmetry investigation of the matrix representations of six nonlinear response tensors. We further identify every MPG that can accommodate two or three of the nonlinear tensors. The present work gives a solid theoretical basis for an overall understanding of the second-order nonlinear responses in realistic materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561712 | PMC |
http://dx.doi.org/10.1093/nsr/nwad104 | DOI Listing |
Phys Chem Chem Phys
September 2025
Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.
Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.
View Article and Find Full Text PDFAdv Mater
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical
Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
The photophysical properties of two new Bodipy dimers are investigated using a variety of techniques, including steady-state UV-vis absorption and fluorescence spectroscopy, femtosecond and nanosecond transient absorption spectroscopy, and pulse laser-excited time-resolved electron paramagnetic resonance (TREPR) spectroscopic methods. The dimers are formed by the Bodipy units rigidly linked by the orthogonal phenylene bridge. One of the dimers is composed of iodinated units, and the other is not.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2025
Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
The present work elucidates the role of lattice oxygen vacancies (Vs) in SrTiO (STO) nanoparticles on the spin dynamics of photogenerated charge carriers (electrons/holes, e/h) and on the photocatalytic hydrogen (H) evolution from HO. V-enriched STO materials (V-STO) were synthesized via anoxic flame spray pyrolysis (A-FSP) technology that allowed production of a library of SrTiO nanomaterials with controlled V concentrations. The optimal V-STO materials exhibited a 200% increase in photocatalytic H production rates compared with pristine STO.
View Article and Find Full Text PDF