Incorporating a D-A-D-Type Benzothiadiazole Photosensitizer into MOFs for Photocatalytic Oxidation of Phenylsulfides and Benzylamines.

Inorg Chem

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[][1,2,5]thiadiazole-4,7-diyl)dibenzoic (HL), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural / with Co/Zn units, and / with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02212DOI Listing

Publication Analysis

Top Keywords

oxidation removal
12
phenylsulfides benzylamines
8
charge separation
8
incorporating d-a-d-type
4
d-a-d-type benzothiadiazole
4
benzothiadiazole photosensitizer
4
mofs
4
photosensitizer mofs
4
mofs photocatalytic
4
oxidation
4

Similar Publications

In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.

View Article and Find Full Text PDF

Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.

Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.

View Article and Find Full Text PDF

The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.

View Article and Find Full Text PDF

Trimetallic Au-Ag-Cu Joint Doped Hydroxyapatite: Synergistic Photo-Fenton-Like Catalytic Performance Enhancement.

ACS Omega

September 2025

College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.

Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.

View Article and Find Full Text PDF

Health Implications of Microplastic Exposure in Pregnancy and Early Childhood: A Systematic Review.

Int J Womens Health

September 2025

Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, UP, India.

Microplastics (MPs), defined as plastic particles smaller than 5 mm, have emerged as a significant environmental pollutant, raising concerns about their potential health risks. Emerging evidence shows that MPs can reach human tissues, including the placenta, causing oxidative stress, inflammation, and endocrine disruption These issues are particularly concerning for vulnerable populations like pregnant women and infants, where exposure could negatively impact fetal development and health outcomes. This systematic review, adhering to PRISMA guidelines, aimed to identify and evaluate studies on the impact of microplastic exposure on pregnancy outcomes and early childhood development.

View Article and Find Full Text PDF