CR6-Interacting Factor-1 Promotes Osteoclastogenesis Through the NF-κB Signaling Pathway after Irradiation.

Radiat Res

Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiation exposure arising from radiotherapy may induce rapid bone loss and an increase in the extent of bone resorption. Reactive oxygen species (ROS) caused by radiation exposure play a crucial role during the process of osteoclastogenesis. However, the pathological mechanisms underlying radiation-induced osteoclastogenesis have yet to be fully elucidated. CR6-interacting factor-1 (Crif1) as a multifunctional protein is involved in regulating multiple biological functions in cells. Here, we investigated the role of Crif1 in radiation-induced osteoclastogenesis and found that radiation exposure induced an increase in the expression level of Crif1 and enhanced osteoclastogenesis in osteoclast progenitors. Crif1 and NF-κB p65 co-localized in the cytoplasm after radiation exposure. Crif1 knockdown did not affect the phosphorylation and total protein levels of extracellular signal-regulated kinases (ERK), c-Jun amino (N)-terminal kinases (JNK), p38, and IκB-α before and after irradiation. However, Crif1 knockdown did lead to the reduced phosphorylation and nuclear translocation of NF-κB p65 after irradiation and resulted in a reduced level of osteoclastogenesis in RAW264.7 cells after irradiation. In vivo studies involving Lyz2Cre;Crif1fl/fl mice possessing the myeloid-specific deletion of Crif1 demonstrated the alleviation of bone loss after irradiation when compared with Crif1fl/fl mice. Our findings demonstrate that Crif1 mediated the phosphorylation and nuclear translocation of NF-κB p65 and promoted osteoclastogenesis via the NF-κB signaling pathway after radiation exposure. Thus, our analysis revealed a specific role for Crif1 in the mediation of radiation-induced bone loss and may provide new insight into potential therapeutic strategies for radiation-induced bone loss.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-22-00066.1DOI Listing

Publication Analysis

Top Keywords

radiation exposure
20
bone loss
16
nf-κb p65
12
crif1
9
cr6-interacting factor-1
8
osteoclastogenesis nf-κb
8
nf-κb signaling
8
signaling pathway
8
radiation-induced osteoclastogenesis
8
role crif1
8

Similar Publications

Background: Thyroid nodules (TNs) are frequent and often benign. Accurately differentiating between benign and malignant nodules is crucial for proper management. This research aims to use ultrasonography to examine TNs and identify possible risk factors in order to improve patient outcomes and diagnostic accuracy.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

Background: To evaluate predictors of outcomes in colorectal liver metastases (CLM) patients undergoing 90Y radioembolization (TARE), focusing on the impact of tumor absorbed dose.

Materials And Methods: Patients' characteristics and dosimetry assessments were analyzed in 231 patients undergoing 329 TARE sessions from 09/2009 to 07/2023. Response was assessed using RECIST1.

View Article and Find Full Text PDF

Brain CT for Diagnosis of Intracranial Disease in Ambulatory Cancer Patients: Assessment of the Diagnostic Value of Scanning Without Contrast Prior to With Contrast.

AJNR Am J Neuroradiol

September 2025

From the Department of Diagnostic Radiology (E.W., A.D., C.J.M., M.C., M.K.G.) and Department of Pathology (L.Y.B.), MD Anderson Cancer Center, Houston, TX, USA; Department of Radiology and Biomedical Imaging (L.T., J.M.J), Yale University, New Haven, CT, USA.

Background And Purpose: Brain imaging with MRI or CT is standard in screening for intracranial disease among ambulatory cancer patients. Although MRI offers greater sensitivity, CT is frequently employed due to its accessibility, affordability, and faster acquisition time. However, the necessity of routinely performing a non-contrast CT with the contrast-enhanced study is unknown.

View Article and Find Full Text PDF

Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.

View Article and Find Full Text PDF