98%
921
2 minutes
20
Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl ions are found in the open and desensitized structures but absent in the resting state structures, Cl substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599103 | PMC |
http://dx.doi.org/10.1002/pro.4800 | DOI Listing |
Clin Oral Investig
September 2025
Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.
Objectives: This study aims to assess periodontal and biochemical parameters and evaluate the salivary Protectin D1 levels in periodontitis patients with and without metabolic syndrome after non-surgical periodontal therapy.
Materials And Methods: Forty patients were categorized into two groups: 20 patients in Group P (systemically healthy patients with stage II/III grade B periodontitis) and 20 patients in Group P+MS (patients with stage II/III grade B periodontitis and metabolic syndrome). Parameters including age, gender, height, weight, body mass index, waist circumference, socio-economic status, oral hygiene index (OHI), modified gingival index (MGI), probing pocket depth, clinical attachment levels, fasting blood glucose, HDL-c, total triglycerides, and blood pressure were recorded.
Carbohydr Polym
November 2025
Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Res
Passion fruit mesocarp is rich in pectin, and high-temperature/pressure modification of this pectin has been shown to yield bioactive fragments with anticancer potential. To clarify the structure-function relationship of passion fruit pectins, we purified native and modified pectins using two fractionation methods. Comprehensive chemical characterization revealed molecular weight as the primary difference between fractions, along with varying proportions of homogalacturonan (HG) and rhamnogalacturonan-I (RG-I).
View Article and Find Full Text PDFACS Synth Biol
September 2025
Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
Triacylglycerols (TAGs) are the main components of food oils and fats. The fatty acid composition of TAGs varies for different oils and fats. Specific enzymes sequentially add three fatty acids to the glycerol backbone of TAGs.
View Article and Find Full Text PDFElife
September 2025
Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
E3 ubiquitin ligases engage their substrates via 'degrons' - short linear motifs typically located within intrinsically disordered regions of substrates. As these enzymes are large, multi-subunit complexes that generally lack natural small-molecule ligands and are difficult to inhibit via conventional means, alternative strategies are needed to target them in diseases, and peptide-based inhibitors derived from degrons represent a promising approach. Here we explore peptide inhibitors of Cdc20, a substrate-recognition subunit and activator of the E3 ubiquitin ligase the anaphase-promoting complex/cyclosome (APC/C) that is essential in mitosis and consequently of interest as an anti-cancer target.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
MnmE and MnmG form a conserved protein complex responsible for the addition of a 5-carboxymethylaminomethyl (cmnm5) group onto the wobble uridine of several transfer RNAs (tRNAs). Within this complex, both proteins collaborate intensively to catalyze a tRNA modification reaction that involves glycine as a substrate in addition to three different cofactors, with FAD and NADH binding to MnmG and methylenetetrahydrofolate (5,10-CH2-THF) to MnmE. Without structures of the MnmEG complex, it remained enigmatic how these substrates and co-factors can be brought together in a concerted manner.
View Article and Find Full Text PDF