A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Association Between Whole Blood-Derived Mitochondrial DNA Copy Number, Low-Density Lipoprotein Cholesterol, and Cardiovascular Disease Risk. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). <0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04-1.12; <0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (β=0.091; =0.11) or in the reverse direction (β=-0.012; =0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (β=-0.084; <0.001), but the reverse direction was not significant (=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (β=-0.092; <0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10757530PMC
http://dx.doi.org/10.1161/JAHA.122.029090DOI Listing

Publication Analysis

Top Keywords

cardiovascular disease
12
mitochondrial dna
8
dna copy
8
copy number
8
mtdna cardiovascular
8
association blood-derived
4
blood-derived mitochondrial
4
number low-density
4
low-density lipoprotein
4
lipoprotein cholesterol
4

Similar Publications