Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The beech leaf disease nematode, Litylenchus crenatae subsp. mccannii, is recognized as a newly emergent nematode species that causes beech leaf disease (BLD) in beech trees (Fagus spp.) in North America. Changes of leaf morphology before emergence from the bud induced by BLD can provoke dramatic effects on the leaf architecture and consequently to tree performance and development. The initial symptoms of BLD appear as dark green, interveinal banding patterns of the leaf. Despite the fast progression of this disease, the cellular mechanisms leading to the formation of such aberrant leaf phenotype remains totally unknown. To understand the cellular basis of BLD, we employed several types of microscopy to provide an exhaustive characterization of nematode-infected buds and leaves. Histological sections revealed a dramatic cell change composition of these nematode-infected tissues. Diseased bud scale cells were typically hypertrophied and showed a high variability of size. Moreover, while altered cell division had no influence on leaf organogenesis, induction of cell proliferation on young leaf primordia led to a dramatic change in cell layer architecture. Hyperplasia and hypertrophy of the different leaf cell layers, coupled with an abnormal proliferation of chloroplasts especially in the mesophyll cell layers, resulted in the typical interveinal leaf banding. These discrepancies in leaf cell structure were depicted by an abnormal rate of cellular division of the leaf interveinal areas infected by the nematode, promoting significant increase of cell size and leaf thickness. The formation of symptomatic BLD leaves is therefore orchestrated by distinct cellular processes, to enhance the value of these feeding sites and to improve their nutrition status for the nematode. Our findings thus uncover relevant cellular events and provide a structural framework to understand this important disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553357PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292588PLOS

Publication Analysis

Top Keywords

leaf
15
beech leaf
12
leaf disease
12
cell
9
cell division
8
interveinal leaf
8
leaf cell
8
cell layers
8
cellular
6
disease
5

Similar Publications

Hydraulic constraints to stomatal conductance in flooded trees.

Oecologia

September 2025

School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.

View Article and Find Full Text PDF

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

Background: This study aimed to develop gluten-free bread from chickpea flour by incorporation of varying levels (0 (B-C), 2.5 (B-1), 5 (B-2), and 10 g kg (B-3)) of madımak leaf powder (MLP), and to investigate its effect on physicochemical and bioactive properties, glycemic index, texture, and sensory attributes.

Results: Moisture ranged from 229 (B-3) to 244 g kg (control), while ash content increased with MLP, reaching 47 g kg in B-3 compared to 15.

View Article and Find Full Text PDF

Morphology and molecular phylogeny of from and .

Mycobiology

September 2025

Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.

The main objective of the present study is to compile and comprehensively reevaluate all known records of in order to establish a standardized framework for the accurate characterization and identification of this species. Nine isolates of obtained from and from various regions of Korea were analyzed. The morphological features of the fungus and isolated colonies were described and illustrated.

View Article and Find Full Text PDF