Pyrolytic and hydrothermal carbonization affect the transformation of phosphorus fractions in the biochar and hydrochar derived from organic materials: A meta-analysis study.

Sci Total Environ

Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbonized organic materials are widely used to achieve soil improvement and alleviate soil pollution. The carbonization process significantly changes the total phosphorus (P) content and the P form in the solid phase derived from organic materials, which in turn has a significant impact on the P fertilizer effect in soils. In the present study, a meta-analysis with 278 observational data was conducted to detect the impact of the carbonization process (including pyrolytic carbonization and hydrothermal carbonization) on the transformation of P fractions in biochar or hydrochar derived from different organic materials. The results showed that the carbonization process significantly increased the total P content of the solid phase by 67.9%, and that the rate of P recovery from raw materials stayed high with a mean value of 86.8%. Among them, the impact of sludge-derived char was smaller when compared to the manure-derived char and biomass-derived char. The increase of total P in the biochar (or hydrochar) produced at >500 °C (or >200 °C) was more notable than that at <500 °C (or <200 °C). Simultaneously, the carbonization process significantly decreased the proportion of available P pool in the solid phase by 51.7% on average and increased the proportion of stable P pool in the solid phase by 204%. Appropriate production temperature helps to adjust the proportion of stable P pool in the solid phase. This meta-analysis pointed out that the carbonized solid phase recovers most of the P in the feedstock and that it promotes a significant transformation of available P pool in the feedstock to stable P in the carbonized solid phase. These findings provide useful information for the rational use of carbonization technology, the development of corresponding field management strategies, and the potential value of carbonized solid phase utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167418DOI Listing

Publication Analysis

Top Keywords

organic materials
16
biochar hydrochar
12
derived organic
12
carbonization process
12
hydrothermal carbonization
8
fractions biochar
8
hydrochar derived
8
solid phase
8
carbonization
6
materials
5

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Rapid Removal of Azo Cationic Dyes Using a Cu(II) Hydrogen-Π-Bonded Organic Framework and Its Derived Oxide: A Combined Adsorption and Photocatalysis Study.

Langmuir

September 2025

Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.

Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF

Chiral Phonon-Induced Spin Transport via Microscopic Barnett Effect.

Phys Rev Lett

August 2025

Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.

Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.

View Article and Find Full Text PDF