98%
921
2 minutes
20
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522974 | PMC |
http://dx.doi.org/10.1002/mco2.376 | DOI Listing |
Semin Cancer Biol
September 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncolog
Immunotherapy has overturned the traditional perception of cancer treatment and brought new vitality to the field of oncology, but it still has unresolved problems such as a low response rate and severe side effects. The microbiome has been found to be involved in tumorigenesis, progression, metastasis and immunity modulation. Especially in immunity, the microbiome plays a key role through delicate mechanisms that regulate the immune response not only from the whole body to the local tumor microenvironment but also from innate to adaptive immunity.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
Background: Bladder cancer (BLCA) is a prevalent malignancy with substantial consequences for patient health. This study aimed to elucidate the underlying mechanisms of BLCA through integrated multi-omics analysis.
Methods: Tumor and adjacent tissues from BLCA patients underwent transcriptomic, whole-exome sequencing, metabolomic, and intratumoral microbiome analyses.
Mol Oncol
September 2025
IRCCS Humanitas Research Hospital, Milan, Italy.
The discovery of tumor-associated bacteria (TAB) challenges the traditional view of tumors as sterile environments. These microbes are engaged in a complex dialog with the other components of the tumor microenvironment (TME), influencing immunity, metastasis, and treatment response. Yet the precise mechanisms by which TAB influence tumor biology remains incompletely understood.
View Article and Find Full Text PDFPhysiol Genomics
September 2025
Department of Bioinformatics, University of Würzburg, Am Hubland, 97074 Würzburg , Germany.
The human microbiome is emerging as a key regulator of cancer biology, modulating tumor development, immune dynamics, and therapeutic responses across diverse malignancies. In this review, recent insights are synthesized regarding how microbial communities (bacterial, fungal, and viral) shape oncogenic signaling, immune checkpoint blockade (ICB) efficacy, and metabolic reprogramming in lung, pancreatic, colorectal, breast, cervical, melanoma, and gastric cancers. Mechanistic links between microbial metabolites, intratumoral colonization, and host immune phenotypes are highlighted proposing that the microbiome constitutes a programmable axis within the tumor immune-metabolic ecosystem.
View Article and Find Full Text PDFRadiology
August 2025
Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China.
Background Patients with breast cancer exhibit different tumor shrinkage patterns (TSPs) after neoadjuvant therapy (NAT), making accurate TSP prediction essential for breast-conserving surgery planning. The intratumoral microbiome influences treatment response, and related imaging features may improve TSP prediction. Purpose To develop an intratumoral microbiome-related MRI model that accurately predicts TSP following NAT.
View Article and Find Full Text PDF