98%
921
2 minutes
20
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a high mortality rate and unclarified aetiology. Immune response is elaborately regulated during the progression of IPF, but immune cells subsets are complicated which has not been detailed described during IPF progression. Therefore, in the current study, we sought to investigate the role of immune regulation by elaborately characterize the heterogeneous of immune cells during the progression of IPF. To this end, we performed single-cell profiling of lung immune cells isolated from four stages of bleomycin-induced pulmonary fibrosis-a classical mouse model that mimics human IPF. The results revealed distinct components of immune cells in different phases of pulmonary fibrosis and close communication between macrophages and other immune cells along with pulmonary fibrosis progression. Enriched signals of SPP1, CCL5 and CXCL2 were found between macrophages and other immune cells. The more detailed definition of the subpopulations of macrophages defined alveolar macrophages (AMs) and monocyte-derived macrophages (mo-Macs)-the two major types of primary lung macrophages-exhibited the highest heterogeneity and dynamic changes in expression of profibrotic genes during disease progression. Our analysis suggested that and were both upregulated in macrophages and may play important roles in pulmonary fibrosis progression. Additionally, the metabolic status of AMs and mo-Macs varied with disease progression. In line with the published data on human IPF, macrophages in the mouse model shared some features regarding gene expression and metabolic status with that of macrophages in IPF patients. Our study provides new insights into the pathological features of profibrotic macrophages in the lung that will facilitate the identification of new targets for disease intervention and treatment of IPF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525351 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1230266 | DOI Listing |
Pol Merkur Lekarski
September 2025
FACULTY OF NURSING, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.
Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.
Annu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFJ Leukoc Biol
September 2025
Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, México.
Ion channels are integral membrane proteins which facilitate rapid transport of small ions into and out of the cell and between organelles and cytosol. Cytolytic lymphocytes including natural killer (NK) cells principally kill virus-infected and cancer cells by releasing cytolytic granules within the immunological synapse, formed between target and effector cells. This process strongly depends on Ca2+ signaling, which in human NK cells is controlled by the phospholipase C (PLCγ)/inositol-1,4,5-triphospate receptor (IP3R)/calcium release-activated calcium channel (CRAC) axis.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.
View Article and Find Full Text PDF