98%
921
2 minutes
20
Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses (ASFVs) during the first outbreak in Hung Yen (VN/HY/2019-ASFV1) and Quynh Phu provinces (VN/QP/2019-ASFV1) in Vietnam in 2019, and the subsequent outbreak in Hung Yen (VN/HY/2022-ASFV2) in 2022, to those of other ASFV strains. VN/HY/2019-ASFV1, VN/QP/2019-ASFV1, and VN/HY/2022-ASFV2 genomes were 189,113, 189,081, and 189,607 bp in length, encoding 196, 196, and 203 open reading frames (ORFs), respectively. VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 shared a 99.91-99.99% average nucleotide identity with genotype II strains. Variations were identified in 28 ORFs in VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 compared to 20 ASFV strains, and 16 ORFs in VN/HY/2022-ASFV2 compared to VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1. Vietnamese ASFV genomes were classified as IGR II variants between the I73R and I329L genes, with two copy tandem repeats between the A179L and A137R genes. A phylogenetic analysis based on the whole genomes of 27 ASFV strains indicated that the Vietnamese ASFV strains are genetically related to Estonia 2014, ASFV-SY18, and Russia/Odintsovo_02/14. These results reveal the complete genome sequences of ASFV circulating during the first outbreak in 2019, providing important insights into understanding the evolution, transmission, and genetic variation of ASFV in Vietnam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537361 | PMC |
http://dx.doi.org/10.3390/v15091945 | DOI Listing |
FEMS Microbiol Rev
September 2025
CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.
View Article and Find Full Text PDFJ Virol
September 2025
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
African swine fever (ASF) has caused a devastating pandemic among domestic and wild swine, leading to significant economic losses in the global swine industry. Recombinant live-attenuated vaccines are a potential option for the control of ASF. However, safe and effective vaccines against the ASF virus (ASFV) are not yet commercially available, and thus, additional vaccine candidates still need to be developed.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
African swine fever virus (ASFV) causes a lethal hemorrhagic disease in domestic pigs and represents a major threat to the global swine industry. Until now, no effective commercial vaccines or antiviral drugs are available for ASF control. In this study, we constructed a recombinant E120R gene-deleted virus, ASFV-ΔE120R, based on the highly virulent genotype II strain SY18, to investigate the biological role of the E120R gene.
View Article and Find Full Text PDFPathogens
August 2025
Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
African swine fever virus (ASFV) and classical swine fever virus (CSFV) are important transboundary animal diseases (TADs) affecting swine. ASFV is a large DNA virus with a genome size of 170-190+ kilobases (kB) belonging to the family , genus Asfivirus. CSFV is a single-stranded RNA virus with a genome size of approximately 12 kB, belonging to the family , genus Pestivirus.
View Article and Find Full Text PDFVaccines (Basel)
August 2025
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA.
Vaccine development for the prevention of ASF has been very challenging due to the extensive genetic and largely unknown antigenic diversity. Inactivated vaccines, using different inactivation methods and a variety of adjuvants, have been consistently inefficacious. Historically, animals recovering from an infection with an attenuated virus became protected from the development of a clinical disease caused by an antigenically related strain.
View Article and Find Full Text PDF