98%
921
2 minutes
20
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525894 | PMC |
http://dx.doi.org/10.3390/biology12091200 | DOI Listing |
J Agric Food Chem
September 2025
The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
This study develops a multienzyme coimmobilization strategy on NTA-functionalized ZIF-8-coated magnetic nanoparticles (NZMNPs) for efficient d-allulose synthesis. Under optimized immobilization conditions (enzyme-to-carrier ratio: 1:50 w/w, 30 min immobilization), the system achieved an immobilization efficiency of 93.7% along with 107.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Tsinghua University, Beijing 100084, China.
A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Physiology, Faculty of Veterinary Medicine, Cairo University, PO 11221, Giza, Egypt.
This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2025
Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Nano-laminography combines the penetrating power of hard X-rays with a tilted rotational geometry to deliver high-resolution, three-dimensional images of laterally extended, flat specimens that are otherwise incompatible with, or difficult to image using, conventional nano-tomography. In this work, we demonstrate a full-field, X-ray nano-laminography system implemented with the transmission X-ray microscope at beamline 32-ID of the upgraded Advanced Photon Source at Argonne National Laboratory, USA. By rotating the sample around an axis inclined by 20° to the incident beam, the technique minimizes the long optical path lengths that would otherwise generate excessive artifacts when planar samples are imaged edge-on.
View Article and Find Full Text PDF