98%
921
2 minutes
20
Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627252 | PMC |
http://dx.doi.org/10.1093/genetics/iyad143 | DOI Listing |
MicroPubl Biol
August 2025
Faculty of Science, Yamagata University.
In yeast, mitochondrial fission is mediated by the dynamin-like GTPase Dnm1, which is recruited to the mitochondrial outer membrane by its receptor, Fis1. To investigate the spatial distribution of Fis1, we used the CRISPR-Cas9 system to insert the gene fragment encoding mNeonGreen into the gene for its N-terminal tagging. Fluorescence microscopy revealed that mNeonGreen-Fis1 appeared as discrete puncta on mitochondria, in addition to a diffuse signal.
View Article and Find Full Text PDFHistone H3 lysine 9 (H3K9) methylation must be regulated to prevent inappropriate heterochromatin for-mation. Regulation of the conserved fission yeast H3K9 methyltransferase Clr4 (Suv39h) involves an au-tomethylation-induced conformational switch and interaction of its catalytic SET domain with mono-ubiquitinated histone H3 lysine 14 (H3K14ub), a modification catalyzed by the Cul4 subunit of the CLRC complex. Using reconstituted CLRC, we show that Clr4 catalytic pocket serves as a substrate receptor for Cul4-dependent H3K14 ubiquitination.
View Article and Find Full Text PDFMicrob Cell
August 2025
Institute of Biotechnology, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu City, 300044, Taiwan.
Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress.
View Article and Find Full Text PDFThe fission yeast phosphate acquisition (PHO) regulon is repressed under phosphate-replete conditions by upstream lncRNA-mediated transcriptional interference. Inositol-1-pyrophosphates control phosphate homeostasis via their action as agonists of precocious PHO lncRNA 3'-processing/termination. Inositol pyrophosphatase-inactivating mutations that increase inositol-1-pyrophosphates elicit derepression of the PHO genes and a severe growth defect in YES medium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Regulation of cell growth and division is essential to achieve cell-size homeostasis. Recent advances in imaging technologies, such as "mother machines" for bacteria or yeast, have allowed long-term tracking of cell-size dynamics across many generations, and thus have brought major insights into the mechanisms underlying cell-size control. However, understanding the governing rules of cell growth and division within a quantitative dynamical-systems framework remains a major challenge.
View Article and Find Full Text PDF