Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2023.109667DOI Listing

Publication Analysis

Top Keywords

rabbit model
8
limbal stem
8
stem cell
8
cell deficiency
8
ophthalmic burr
8
cellular infiltration
8
infiltration stroma
8
limbal
5
development validation
4
validation reliable
4

Similar Publications

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

Antitumor Effects of Doxorubicin-Loaded Cellulose Nanoparticles in the Rabbit VX2 Liver Tumor Model.

Cardiovasc Intervent Radiol

September 2025

Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.

Purpose: To evaluate the preclinical efficacy and safety of transarterial chemoembolization (TACE) using doxorubicin-loaded biocompatible cellulose nanoparticles in a rabbit VX2 liver tumor model.

Materials And Methods: Following institutional animal care committee approval, 23 rabbits with VX2 liver tumors were randomized into three groups: Group A (n = 9) received doxorubicin-loaded cellulose nanoparticles with ethiodized oil; Group B (n = 9) received doxorubicin with ethiodized oil; and Group C (n = 5) served as untreated controls. Tumor size was monitored via ultrasound for 4 weeks, and serum liver enzymes (aspartate transaminase and alanine transaminase) were measured on days 1, 3, and 7 to assess hepatotoxicity.

View Article and Find Full Text PDF

Study of a near-cortical over-drilling technique on plate constructs with a conical locking system in a rabbit femoral fracture using a finite element model.

Med Eng Phys

October 2025

Centre for Simulation in Bioengineering, Biomechanics and Biomaterials (CS3B), Department of Mechanical Engineering, School of Engineering of Bauru, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Electronic address:

This study aimed to evaluate the near-cortical over-drilling technique on the mechanical behaviour of bone-plate constructs in a rabbit transverse femoral fracture. In vitro biomechanical testing and finite element (FE) models were used for analyses. Rabbits' bones (n = 14) were divided into two groups: G1 - without near-cortical over-drilling, and G2 - with near-cortical over-drilling.

View Article and Find Full Text PDF

A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.

View Article and Find Full Text PDF

Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.

Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.

View Article and Find Full Text PDF