Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2023.09.018DOI Listing

Publication Analysis

Top Keywords

high fibre
12
fibre diet
12
fibre-rich diet
4
diet attenuates
4
attenuates chemotherapy-related
4
neuroinflammation
4
chemotherapy-related neuroinflammation
4
neuroinflammation mice
4
mice gastrointestinal
4
gastrointestinal microbiota
4

Similar Publications

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

High Efficiency Labeling of nerve Fibers in cleared tissue for light-sheet microscopy.

J Neurosci Methods

September 2025

European Laboratory for Non-linear Spectroscopy, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; National Institute of Optics -National Research Council (CNR-INO), 50125 Sesto Fiorentino, Italy. Electronic address:

Background: Tissue clearing techniques combined with light-sheet fluorescence microscopy (LSFM) enable high-resolution 3D imaging of biological structures without physical sectioning. While widely used in neuroscience to determine brain architecture and connectomics, their application for spinal cord mapping remains more limited, posing challenges for studying demyelinating diseases like multiple sclerosis. Myelin visualization in cleared tissues is particularly difficult due to the lipid-removal nature of most clearing protocols, and alternative immunolabeling approaches failed to reach satisfying results.

View Article and Find Full Text PDF

Development on sustainable and inexpensive polymer fibers with high mechanical and water resistance properties has garnered significant attention in infrastructure application. Herein, lignin nanoparticles (LNP) were used as a modifier, boron nitride nanosheets (BNNS)@hyperbranched polylysine (HBPL) obtained were regarded as the cooperative modifier, and then polyvinyl alcohol (PVA)/LNP/BNNS@HBPL composite fibers were fabricated successfully by wet and dry spinning. Vast free hydrophilic hydroxyl groups in PVA decreased due to hydrogen bonding interactions among LNP, BNNS@HBPL, and PVA, thereby attenuating intramolecular and intermolecular hydrogen bonding within PVA.

View Article and Find Full Text PDF

The persistent presence of Metronidazole (MTZ), a commonly used antibiotic, in water bodies is a serious environmental and health concern because of its genotoxic and carcinogenic potential. Here, we report an effective visible-light photocatalyst system comprising an S-scheme glycine-modified TiO/FeO heterojunction immobilized on chitosan-polyacrylonitrile nanofibers. The photocatalyst nanocomposite was synthesized through a sol-gel and ultrasonication process coupled with electrospinning-assisted immobilization.

View Article and Find Full Text PDF

Applying high-density surface EMG to the study of neuromuscular disorders: a systematic review.

Clin Neurophysiol

August 2025

University of Queensland, Centre for Clinical Research, Herston, QLD, Australia; Royal Brisbane & Women's Hospital, Herston, QLD, Australia. Electronic address:

Objective: High-density surface electromyography (HD-sEMG) is a non-invasive and quantitative tool for studying neuromuscular disorders, enabling assessments of muscle excitation, motor unit (MU) characteristics and firing patterns. This systematic review reports the published evidence on the clinical applications of HD-sEMG across neuromuscular disorders, identifying the range of disorders studied, indexes utilized, and gaps in the literature.

Methods: Systematic searches in PubMed and Scopus identified 200 studies, of which 55 met the inclusion criteria.

View Article and Find Full Text PDF