Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Aims: Predicting the prognosis of acute ischemic stroke (AIS) is crucial in a clinical setting for establishing suitable treatment plans. This study aimed to develop and validate a machine learning (ML) model that predicts the functional outcome of AIS patients and provides interpretable insights.
Methods: We included AIS patients from a multicenter stroke registry in this prognostic study. ML-based methods were utilized to predict 3-month functional outcomes, which were categorized as either favorable [modified Rankin Scale (mRS) ≤ 2] or unfavorable (mRS ≥ 3). The SHapley Additive exPlanations (SHAP) method was employed to identify significant features and interpret their contributions to the predictions of the model.
Results: The dataset comprised a derivation set of 3,687 patients and two external validation sets totaling 250 and 110 patients each. Among them, the number of unfavorable outcomes was 1,123 (30.4%) in the derivation set, and 93 (37.2%) and 32 (29.1%) in external sets A and B, respectively. Among the ML models used, the eXtreme Gradient Boosting model demonstrated the best performance. It achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.790 (95% CI: 0.775-0.806) on the internal test set and 0.791 (95% CI: 0.733-0.848) and 0.873 (95% CI: 0.798-0.948) on the two external test sets, respectively. The key features for predicting functional outcomes were the initial NIHSS, early neurologic deterioration (END), age, and white blood cell count. The END displayed noticeable interactions with several other features.
Conclusion: ML algorithms demonstrated proficient prediction for the 3-month functional outcome in AIS patients. With the aid of the SHAP method, we can attain an in-depth understanding of how critical features contribute to model predictions and how changes in these features influence such predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513028 | PMC |
http://dx.doi.org/10.3389/fneur.2023.1234046 | DOI Listing |