A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Risk prediction models for cardiovascular events in hemodialysis patients: A systematic review. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To perform a systematic review of risk prediction models for cardiovascular (CV) events in hemodialysis (HD) patients, and provide a reference for the application and optimization of related prediction models.

Methods: PubMed, The Cochrane Library, Web of Science, and Embase databases were searched from inception to 1 February 2023. Two authors independently conducted the literature search, selection, and screening. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was applied to evaluate the risk of bias and applicability of the included literature.

Results: A total of nine studies containing 12 models were included, with performance measured by the area under the receiver operating characteristic curve (AUC) lying between 0.70 and 0.88. Age, diabetes mellitus (DM), C-reactive protein (CRP), and albumin (ALB) were the most commonly identified predictors of CV events in HD patients. While the included models demonstrated good applicability, there were still certain risks of bias, primarily related to inadequate handling of missing data and transformation of continuous variables, as well as a lack of model performance validation.

Conclusion: The included models showed good overall predictive performance and can assist healthcare professionals in the early identification of high-risk individuals for CV events in HD patients. In the future, the modeling methods should be improved, or the existing models should undergo external validation to provide better guidance for clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sdi.13181DOI Listing

Publication Analysis

Top Keywords

risk prediction
8
prediction models
8
models cardiovascular
8
cardiovascular events
8
events hemodialysis
8
hemodialysis patients
8
systematic review
8
risk bias
8
events patients
8
included models
8

Similar Publications