Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The way animals select their breeding habitat may have great impacts on individual fitness. This complex process depends on the integration of information on various environmental factors, over a wide range of spatiotemporal scales. For seabirds, breeding habitat selection integrates both land and sea features over several spatial scales. Seabirds explore these features prior to breeding, assessing habitats' quality. However, the information-gathering and decision-making process by seabirds when choosing a breeding habitat remains poorly understood. We compiled 49 historical records of larids colonies in Cuba from 1980 to 2020. Then, we predicted potentially suitable breeding sites for larids and assessed their breeding macrohabitat selection, using deep and machine learning algorithms respectively. Using a convolutional neural network and Landsat satellite images we predicted the suitability for nesting of non-monitored sites of this archipelago. Furthermore, we assessed the relative contribution of 18 land- and marine-based environmental covariates describing macrohabitats at three spatial scales (i.e. 10, 50 and 100 km) using random forests. Convolutional neural network exhibited good performance at training, validation and test (F1-scores >85%). Sites with higher habitat suitability ( > .75) covered 20.3% of the predicting area. Larids breeding macrohabitats were sites relatively close to main islands, featuring sparse vegetation cover and high chlorophyll- concentration at sea in 50 and 100 km around colonies. Lower sea surface temperature at larger spatial scales was determinant to distinguish the breeding from non-breeding sites. A more comprehensive understanding of the seabird breeding macrohabitats selection can be reached from the complementary use of convolutional neural networks and random forest models. Our analysis provides crucial knowledge in tropical regions that lack complete and regular monitoring of seabirds' breeding sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505760 | PMC |
http://dx.doi.org/10.1002/ece3.10549 | DOI Listing |