98%
921
2 minutes
20
Numerous studies have focused on the classification of N6-methyladenosine (m6A) modification sites in RNA sequences, treating it as a multi-feature extraction task. In these studies, the incorporation of physicochemical properties of nucleotides has been applied to enhance recognition efficacy. However, the introduction of excessive supplementary information may introduce noise to the RNA sequence features, and the utilization of sequence similarity information remains underexplored. In this research, we present a novel method for RNA m6A modification site recognition called M6ATMR. Our approach relies solely on sequence information, leveraging Transformer to guide the reconstruction of the sequence similarity matrix, thereby enhancing feature representation. Initially, M6ATMR encodes RNA sequences using 3-mers to generate the sequence similarity matrix. Meanwhile, Transformer is applied to extract sequence structure graphs for each RNA sequence. Subsequently, to capture low-dimensional representations of similarity matrices and structure graphs, we introduce a graph self-correlation convolution block. These representations are then fused and reconstructed through the local-global fusion block. Notably, we adopt iteratively updated sequence structure graphs to continuously optimize the similarity matrix, thereby constraining the end-to-end feature extraction process. Finally, we employ the random forest (RF) algorithm for identifying m6A modification sites based on the reconstructed features. Experimental results demonstrate that M6ATMR achieves promising performance by solely utilizing RNA sequences for m6A modification site identification. Our proposed method can be considered an effective complement to existing RNA m6A modification site recognition approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501384 | PMC |
http://dx.doi.org/10.7717/peerj.15899 | DOI Listing |
Nat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Medical Oncology, Haikou People's Hospital, Haikou, Hainan, People's Republic of China.
Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.
View Article and Find Full Text PDF