98%
921
2 minutes
20
The Hippo pathway plays a crucial role in the regulation of follicular activation, which constitutes the first step of the folliculogenesis process. Disruption of this pathway occurs in several non-physiological contexts, after fragmentation for ovarian tissue cryopreservation procedures or chemotherapy exposure, leading to massive follicular growth and depletion. This study aimed to investigate the effect of controlling the Hippo pathway using verteporfin (VERT) during in vitro ovarian culture and to evaluate its potential preventive effects on chemotherapy-induced follicle activation using a mouse model. After exposure of cut ovaries to different concentrations of VERT for 3 h, a dose-dependent effect of VERT was observed that reached significant inhibition of YAP activity at 3 µmol/L. To assess the potential effect of controlling chemotherapy-induced Hippo pathway disruption, whole mouse ovaries were exposed to VERT alone or as a co-treatment with 4-hydroperoxycylophosphamide (4HC). VERT co-treatment prevented chemotherapy-induced YAP activation but had a limited impact on downstream effector gene, Ccn2. Surprisingly, VERT co-treatment also prevented mTOR and survival signaling pathway alterations following chemotherapy exposure. These results suggest an interaction between the two main signaling pathways regulating follicle activation and a protective effect of VERT on 4HC-induced DNA damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504383 | PMC |
http://dx.doi.org/10.1038/s41598-023-41954-0 | DOI Listing |
Nat Commun
September 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA.
Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.
View Article and Find Full Text PDFJ Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDFInt J Pharm
September 2025
CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) remains a highly aggressive malignancy with poor therapeutic outcomes due to its desmoplastic tumor microenvironment (TME), hindering drug and activated immune cell penetration. Cancer-associated fibroblasts (CAFs) are central in supporting tumor growth and forming a protective stroma. We propose a novel dual-therapy targeting the Hippo pathway and histone deacetylation, both involved in tumor progression, resistance, and stromal interactions, to overcome PDAC therapeutic resistance.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.
EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.
View Article and Find Full Text PDFAging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDF