A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multiplex genotyping of SNPs in genomic DNA via hydrogel-based assay mediated with MutS and polyethylene glycol. | LitMetric

Multiplex genotyping of SNPs in genomic DNA via hydrogel-based assay mediated with MutS and polyethylene glycol.

Biosens Bioelectron

Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The simultaneous genotyping of multiple single nucleotide polymorphisms (SNPs) in genomic DNA derived from organisms holds significant potential for applications such as precision medicine and food product authentication. However, conventional assay technologies including qPCR-based techniques, microarrays, and hydrogel-based assays face limitations in efficient multiplexing of SNPs, particularly for large-size DNA beyond kilobase scales, due to constraints in multiplex capability, specificity, or sensitivity. In this study, a hydrogel-based multiplex SNP genotyping platform specifically designed for genomic DNA is presented. This platform integrates the ligation detection reaction (LDR) and rolling circle amplification (RCA) techniques within a hydrogel-based multiplex sensing system, enabling adaptable and sensitive SNP genotyping for genomic DNA. To enhance the specificity of the assay, MutS protein and polyethylene glycol are introduced into the protocol, reducing the non-specific ligation and RCA reactions synergistically. With significant specificity improvement of over 10-fold, three types of SNPs within an artificially constructed ∼1000 bp double-stranded DNA (dsDNA) are successfully genotyped with double-digit picomolar sensitivity. Furthermore, the practical applicability of the developed process for the origin identification of raw materials is demonstrated by genotyping three types of SNPs within genomic DNA obtained from two closely related plant species, Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius), containing ca. 3.5 gigabase genome size. Of notable significance, this study marks the premiere achievement in PCR-free multiplex genotyping of SNPs in genomic DNA using a single fluorophore.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115670DOI Listing

Publication Analysis

Top Keywords

genomic dna
24
snps genomic
16
multiplex genotyping
8
genotyping snps
8
dna
8
polyethylene glycol
8
hydrogel-based multiplex
8
snp genotyping
8
three types
8
types snps
8

Similar Publications