Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531405PMC
http://dx.doi.org/10.7554/eLife.86340DOI Listing

Publication Analysis

Top Keywords

functional components
12
cerebellar climbing
8
climbing fiber
8
multiple functional
8
reduces dimensions
8
learning
8
reinforcement learning
8
purkinje cells
8
timing control
8
components
7

Similar Publications

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Perylenediimide-Based Donor-Acceptor MOF for Sunlight-Driven Photocatalytic -α-C(sp)-H Bond Functionalization of Tetrahydroisoquinoline.

Inorg Chem

September 2025

Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.

Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.

View Article and Find Full Text PDF

Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.

View Article and Find Full Text PDF

Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.

View Article and Find Full Text PDF

The small GTPase Rho5-Yet another player in yeast glucose signaling.

PLoS Genet

September 2025

Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.

The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.

View Article and Find Full Text PDF