Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498723PMC
http://dx.doi.org/10.1039/d3sc02165cDOI Listing

Publication Analysis

Top Keywords

versatile class
8
class diarylethenes
8
full spectrum
8
spectrum photoactivity
8
photoactivity water
8
23-diarylmaleate salts
4
salts versatile
4
diarylethenes
4
diarylethenes full
4
water
4

Similar Publications

In recent years, the hydrazide skeleton, as a pivotal class of nitrogen-containing structures, has garnered considerable attention in medicinal chemistry and organic synthesis owing to its unique chemical versatility and broad-spectrum biological activities. In this study, a series of thiazole-containing benzoylhydrazine derivatives -, -, and - with structural divergence from conventional hydrazide-based molecular frameworks were designed, synthesized, and evaluated for their antifungal/antioomycete activities. The antifungal/antioomycete assay showed that some of the targeted compounds exhibited remarkable and broad-spectrum antifungal activities.

View Article and Find Full Text PDF

Natural products have emerged as a vital source of active ingredients in medicine, food, and cosmetics due to their unique biological activities, safety profiles, and sustainability. However, most bioactive compounds in natural products are intensely bitter, limiting their use in pharmaceuticals and foods. The bitter taste attributes vary markedly among different compound classes, predominantly due to their structural characteristics.

View Article and Find Full Text PDF

Polyesters are a widely used class of biomaterials thanks to their (bio)degradability and tunable thermomechanical properties. Introducing dynamic disulfide bonds into their backbone enables them to be degraded through different routes and also imparts self-healing properties. However, while numerous polymerization protocols exist with which to introduce disulfide bonds into linear polymers, these methods lack the versatility needed to produce materials with diverse thermomechanical properties.

View Article and Find Full Text PDF

Global challenges posed by freshwater scarcity and the water-energy nexus drive demand for novel macromolecular design of tailored nanostructures endowed with a variety of hydrophilic and hydrophobic features. Offering potential to meet this demand, metal-organic framework (MOF) materials are synthesized from coordinated formations that create versatile reticular structures with variable water adsorption affinities. However, advances in the fundamental understanding of water interactions within these structures are impeded by the failure of classical analyses to identify mechanisms of interaction, connect fundamental isotherm types, and provide appropriate benchmarks for assessment.

View Article and Find Full Text PDF

We propose an innovative technology to classify the Mechanism of Action (MoA) of antimicrobials and predict their novelty, called HoloMoA. Our rapid, robust, affordable and versatile tool is based on the combination of time-lapse Digital Inline Holographic Microscopy (DIHM) and Deep Learning (DL). In combination with hologram reconstruction.

View Article and Find Full Text PDF