98%
921
2 minutes
20
This work demonstrates the efficient tuning of incoherent and coherent coupling between emitters embedded in an epsilon-near-zero (ENZ) waveguide coated with a multilayer graphene. As a result, a tunable two-qubit quantum phase gate based on the ENZ waveguide is realized at the cutoff frequency. Furthermore, due to the vanishingly small permittivity of the ENZ waveguide, all incoherent coupling between any two identical emitters located in the central area of the slit approaches a maximum, enabling near-ideal bipartite and multipartite entanglement. The coherent coupling between emitters is much larger at an operating frequency far from the ENZ resonance frequency than at the cutoff frequency, and the coherent coupling and resulting energy transfer efficiency can also be effectively tuned by the Fermi level of graphene. These results demonstrate an efficiently tunable electro-optical platform for quantum devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.498569 | DOI Listing |
Phys Rev Lett
August 2025
Cavendish Laboratory, NanoPhotonics Centre, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0US, United Kingdom.
Coupling with a resonant optical cavity is well known to modify the coherence of molecular vibrations. However, in the case of molecules coupled to a plasmonic nanocavity mode, the local mechanisms of vibrational coherence decay remain unclear. Here, the dynamics of a few hundred molecules of nitrothiophenol (NTP) within a single plasmonic nanocavity are studied by sum-frequency generation.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy.
We experimentally investigate a system composed of two levitating nanospheres whose motions are indirectly coupled via coherent scattering in a single optical cavity mode. The nanospheres are loaded into a double longitudinal tweezer created with two lasers at different wavelengths, where chromatic aberration leads to the formation of two separate trapping sites. We achieve strong coupling between each pair of modes in the transverse plane of the tweezer, and we show the emergence of dark modes in the overall coupled motion.
View Article and Find Full Text PDFChem Soc Rev
September 2025
State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.
View Article and Find Full Text PDFChaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2025
School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel. Electronic address:
Geopolymers are aluminosilicate materials that exhibit effective immobilization properties for low-level radioactive nuclear waste, and more specifically for the immobilization of radioactive cesium. The identification of the cesium-binding sites and their distribution between the different phases making up the geopolymeric matrix can be obtained using solid-state NMR measurements of the quadrupolar spin Cs, which is a surrogate for the radioactive cesium species present in nuclear waste streams. For quadrupolar nuclei, acquiring two-dimensional multiple-quantum experiments allows the acquisition of more dispersed spectra when multiple sites overlap.
View Article and Find Full Text PDF