Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A multimode detection system has stringent requirements in terms of electromagnetic characteristic control and electromagnetic compatibility. To meet these requirements, we designed and manufactured a type of transparent electromagnetic-wave-absorbing optical window based on a random grid (EAOWRG) in this study. Owing to the design and regulation of the materials of the random grid and the structures of the metasurface, the optical window has excellent multispectral transparency, electromagnetic wave absorption, and electromagnetic shielding performance. The experimental results showed that the transmissivity of the EAOWRG in the optical spectral ranges of 460-800 nm and 8-12 µm is above 89.77%, the electromagnetic reflectivity in the frequency ranges of 3.6-7.2 GHz and 14.3-17.7 GHz is not more than - 5 dB, the bandwidth at which the electromagnetic reflectivity is not more than -10 dB is 4.4 GHz, the electromagnetic shielding effectiveness in the frequency range of 2-18 GHz is above 31 dB. The average radar cross section of the detection system using the EAOWRG in the ± 60° angle domain at 6 GHz is 8.79 dB lower than that before processing. The detection system has a good imaging effect in the visible and infrared bands, meeting the requirements of the electromagnetic characteristic control and electromagnetic compatibility, and has good application prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.497225DOI Listing

Publication Analysis

Top Keywords

optical window
12
random grid
12
detection system
12
electromagnetic
9
transparent electromagnetic-wave-absorbing
8
electromagnetic-wave-absorbing optical
8
based random
8
electromagnetic characteristic
8
characteristic control
8
control electromagnetic
8

Similar Publications

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF

Introduction: The definition of Leber's hereditary optic neuropathy (LHON) does not take into account a preclinical phase during which the thickness of retinal nerve fiber layer (RNFL) is increased, prior to optic nerve atrophy, reducing the chances of visual recovery.

Objectives: Search for a metabolomic signature characterizing this preclinical phase and identify biomarkers predicting the risk of LHON onset.

Methods And Results: The blood and tear metabolomic profiles of 90 asymptomatic LHON mutation carriers followed for one year will be explored as a function of RNFL thickness and compared to those of a healthy control.

View Article and Find Full Text PDF

Preparation, Characterization, and Self-Assembly of P3HT-Based Janus Fibers via a Crystallization-Driven Self-Assembly Process.

ACS Macro Lett

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.

View Article and Find Full Text PDF

A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.

View Article and Find Full Text PDF

Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.

View Article and Find Full Text PDF