98%
921
2 minutes
20
There is an urgent need to develop an economical and convenient method for the ultrasensitive detection of patulin (PAT), a mycotoxin that can potentially harm human health when it is found in fruits and their derivatives. In this study, we have developed a novel fluorescent aptasensor that utilizes nitrogen-doped carbon dots (N-CDs) as the fluorescent donor and hexagonal β-Co(OH) nanoplates as the fluorescent acceptor. N-CDs were synthesized through the hydrothermal method, resulting in spherical particles with a diameter of 7.6 nm. These nanoparticles exhibited excellent water solubility and displayed a vibrant blue emission at 448 nm when excited at 360 nm. Cobalt hydroxide nanoplates with a beta crystal structure [β-Co(OH)] were synthesized using a simple co-precipitation method, exhibiting hexagonal plate-like shapes with uniform lateral sizes of 4-5 μm. The fluorescence of N-CDs can be efficiently quenched by hexagonal β-Co(OH) nanoplates through Förster resonance energy transfer mechanism. The maximum quenching-recovery capability can be achieved when the concentrations of N-CDs-Apt and β-Co(OH) nanoplates are 150 nmol/L and 100 μg/mL, respectively. The pH of the TE buffer should be 8.0, and the incubation time should be 10 min at 25 °C. The developed fluorescent aptasensor displayed an excellent selectivity for PAT determination with a detection limit of 0.57 pg/mL in the linear range of 1.25 pg/mL-100 ng/mL. The rapid PAT determination in fruit juice samples was realized with good recoveries (96.9-105.8%). The developed fluorescent aptasensor based on the interaction between N-CDs and hexagonal β-Co(OH) nanoplates can be a promising method for the rapid and ultrasensitive detection of PAT in agricultural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341710 | DOI Listing |
Adv Mater
September 2025
NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China.
Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as BiTe are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic-scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs.
View Article and Find Full Text PDFChemSusChem
September 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, Himachal Pradesh, India.
Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Public experimental research center of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; The school of pharmacy of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China. Electronic address:
Manganese dioxide (MnO) nanomaterials have emerged as a promising class of nanoplatform for the therapeutic management of tumors due to their regulable physicochemical properties and good biocompatibility. However, the rational design of MnO nanomaterials often decreased the therapeutic efficacy of tumors due to the inherent protective mechanisms of eliminating the imbalance of Mn in cells. Herein, we firstly prepared a novel Zn ion doped MnO nanoplate (Zn-MnO) employing different zeolitic imidazolate framework 8 (ZIF8) precursors as Zn ion source, which possessed enhanced T1-weighted magnetic resonance imaging (MRI) signal, reactive oxygen species (ROS) generation capacity and efficient photothermal conversion.
View Article and Find Full Text PDFACS Nanosci Au
August 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Lead halide perovskite (LHP) nanocrystals have demonstrated a significant electronic response to their local environment due to their ionic lattice nature. Here, we demonstrated their tunable dipole alignment via solution-processed methods. We synthesized LHP nanocubes and nanoplates in air and characterized them by UV-vis spectrophotometry and transmission electron microscopy.
View Article and Find Full Text PDFSmall
August 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
Nanohesives, such as silica nanoparticles and metal oxide nanoparticles, have recently demonstrated considerable potential for hydrogel adhesion. However, the application of a wide variety of metal-organic frameworks (MOFs) as nanohesives remains seldom reported. Here, the synthesis of 2D calcium-based MOF (Ca-MOF) nanoplates is reported via a simple one-pot approach at room temperature.
View Article and Find Full Text PDF