Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sorafenib (SOR) is an oral multikinase inhibitor that effectively hampers the growth and spread of cancer cells by targeting angiogenesis and proliferation. However, SOR tablets (Nexavar) have limited oral bioavailability, ranging from 38% to 49%, due to their low water solubility. To address this issue, cyclodextrins (CDs), widely used to enhance the solubility and stability of lipophilic drugs by encapsulating them within their molecular structure, were considered in this study. We focused on β-cyclodextrin (βCD) and its derivatives, including hydroxypropyl-β-cyclodextrin (HPβCD), dimethyl-β-cyclodextrin (DMβCD), sulfobutylether-β-cyclodextrin (SBEβCD), and compared them with γ-cyclodextrin (γCD) for generating inclusion complexes with SOR. The 200 ns molecular dynamics simulations revealed that SOR could form inclusion complexes with all CDs in two possible orientations: pyridine group insertion (P-form) and chlorobenzotrifluoride group insertion (C-form), primarily driven by van der Waals interactions. Among the four βCD derivatives studied, SOR exhibited the highest number of atom contacts with SBEβCD and demonstrated the lowest solvent accessibility within the hydrophobic cavity of SBEβCD. These findings correlated with the highest binding affinity of SOR/SBEβCD complex determined by SIE, MM/GBSA, and MM/PBSA methods. Experimental results further supported our computational predictions, in which SBEβCD exhibited a stability constant of 940 M at 25 °C, surpassing βCD's stability constant of 210 M. Taken together, our results suggest that the modified CDs, particularly SBEβCD, hold promising potential as an efficient molecular encapsulating agent for SOR, offering improved solubility and stability for this lipophilic drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494890PMC
http://dx.doi.org/10.1039/d3ra03867jDOI Listing

Publication Analysis

Top Keywords

solubility stability
12
stability lipophilic
8
βcd derivatives
8
inclusion complexes
8
group insertion
8
stability constant
8
sor
6
stability
5
sbeβcd
5
enhancing solubility
4

Similar Publications

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF