Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Experimental observations revealed that the amyloid-β 42 oligomer (AβO) can directly bind to the LilrB2 D1D2(LDD) receptor with nanomolar-affinity, leading to changes in synaptic plasticity and cognitive deficits. However, the dependence of neurotoxicity on the morphology, size, and aggregation stage (SP1, SP2) of AβO, as well as the specific molecular mechanism of AβO-LDD interaction, remain uncertain. To address these uncertainties, we investigated the interaction between the LDD neuroreceptor and AβO with different Aβ42 species (nontoxic species, toxic species, and protofibril) and sizes. Our results showed that the LDD selectively binds AβO species rather than the Aβ42 monomer, accommodating various Aβ42 dimers and trimers as well as SP2 AβO, in a specific pose in the pocket of the LDD receptor (region I). Additionally, protofibrils with exposed β1/β2 regions can also bind to region I of the LDD receptor, as observed experimentally (Cao, , , 2018, , 1213; and Aim , , 2021, , 3451). More extensively, we identified two additional regions of the LDD receptor, regions II and III, suitable for binding to larger AβO species at the SP1 with different molecular weights and conformations, accounting for the stronger binding strength obtained experimentally. We suggest that the two regions are more competitive than region I in causing toxicity by AβO binding. The detailed and systematic characterization for the complexes generated between the LDD receptor and various AβO species, including the protofibril, offers deep insight into the dependence of neurotoxicity on the AβO size and conformation at the molecular level, and provides novel and specific targets for drug design of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02746eDOI Listing

Publication Analysis

Top Keywords

ldd receptor
16
aβo species
12
aβo
9
dependence neurotoxicity
8
sp2 aβo
8
receptor
6
ldd
6
species
6
identification characterization
4
characterization conformation
4

Similar Publications

Purpose: BMS-986365, a heterobifunctional AR LDD, was designed as a potent cereblon-dependent degrader and competitive antagonist of AR to overcome resistance to ARPIs in metastatic prostate cancer (PC).

Experimental Design: In vitro impact of BMS-986365-induced AR degradation on AR activity and PC cell proliferation was evaluated. Intrinsic agonistic and antagonist activities of BMS-987365 were assessed.

View Article and Find Full Text PDF

Overcoming challenges in drug targeting and modulating the immunosuppressive microenvironment are critical for treating chronic bacterial infections, which are often characterized by intracellular bacteria and biofilms. To overcome these barriers, we report a multifunctional nanomedicine (CpE@BMV). The prodrug conjugate (CpE), composed of two phenylboronic acid-modified ciprofloxacin (Cip-pba) molecules and ellagic acid (Ea), self-assembles due to its hydrophobic nature and π-π stacking.

View Article and Find Full Text PDF

Recently long-read sequencing technologies and bioinformatics have enabled the construction of haplotype-resolved genome assemblies. Here, we present the complete and accurate de novo characterization of two challenging genomic regions, the major histocompatibility complex (MHC) and Killer-cell immunoglobulin-like receptors (KIRs), in phased haplotypic form, using the Oxford Nanopore Technology (ONT) Adaptive Sampling sequencing, and a newly developed bioinformatics pipeline. These critical regions for our immune response have been notoriously difficult to characterize due to their sequence variability and structural complexity.

View Article and Find Full Text PDF

Downregulation and Hypermethylation of Vitamin D Receptor in Lumbar Disc Degeneration.

Int J Mol Sci

March 2025

Center of Excellence in Osteoarthritis and Musculoskeleton, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.

Lumbar disc degeneration (LDD) is a common musculoskeletal disorder that leads to chronic pain and functional impairment. Recent studies have suggested that the vitamin D receptor (VDR) plays a key part in regulating matrix metabolism, inflammation, and apoptosis in intervertebral discs (IVDs). The objective of this study was to examine cytokine expression and DNA methylation status of the VDR gene in blood leukocytes and lumbar disc tissues from patients with varying degrees of LDD severity.

View Article and Find Full Text PDF

Late leukapheresis (>6 months after CAR19) resulted in less residual CAR19, higher CAR22 CD4+ naïve T and TCM cells, less TEM cells, and higher CD8+ TCM cells, but similar clinical outcomes to those with early leukapheresis. CAR22 responses were associated with higher transduction efficiency and CD8+ TCM and less CD8+ TEM cells.

View Article and Find Full Text PDF