Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of coconut fiber biochar (CFB) and nitrate-modified coconut fiber biochar (NCFB) on the passivation of exogenous lead (Pb) in paddy soils and their underlying mechanisms were investigated using soil incubation experiments combined with spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), synchrotron radiation X-ray fluorescence (SRXRF), and Fourier transform infrared absorption spectroscopy (FTIR). The effects of NCFB and CFB on the passivation of exogenous lead (Pb) in paddy soils and its underlying mechanisms were investigated. Compared with that of CFB, the inner wall of NCFB honeycomb pores was rougher, and the amount of alcohol-phenol-ether functional groups containing the C-O structure and the amount of carboxyl groups containing the C[FY=,1]O/O[FY=,1]C-O structure on the surface of CFB was significantly decreased after nitric acid modification. Compared with that in the control (without biochar) paddy soil after 150 d of incubation, the EDTA-extracted Pb content in the paddy soil with CFB and NCFB was reduced by 39.7% and 105.4%, respectively. The carbonate-bound and Fe-Mn oxide-bound Pb contents were significantly lower, and the organic-bound and residue Pb contents were significantly higher in the NCFB-added soil. The SRXRF scans showed that the exogenous Pb was enriched in the microregions of CFB particles rich in Ca and Cu elements and relatively less so in the microregions of soil aggregates rich in the Fe, Mn, and Ti elements. In addition, the characteristic peaks of carboxylates (1384 cm) in A-CFB and A-NCFB were significantly enhanced in the incubation experiment in the presence of exogenous Pb compared to A-CFB and A-NCFB in the absence of exogenous Pb. The addition of CFB or NCFB was more effective in passivating exogenous Pb in paddy soils and promoted the gradual transformation of Pb from unstable to more stable forms in paddy soils to achieve the effect of passivating Pb. The greater amount of carboxyl functional groups in NCFB participated in the passivation of exogenous Pb, which made NCFB more effective than CFB in passivating Pb. NCFB was more effective than CFB in passivating exogenous Pb in paddy soils due to its rougher inner walls of honeycomb pores and abundant carboxyl functional groups. In tropical areas such as Hainan, coconut fiber biochar and its modification can be considered as an environmentally friendly candidate method for the remediation of soil Pb contamination.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202208042DOI Listing

Publication Analysis

Top Keywords

paddy soils
20
coconut fiber
16
fiber biochar
16
passivation exogenous
12
functional groups
12
ncfb effective
12
cfb
9
paddy
8
ncfb
8
exogenous
8

Similar Publications

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Fe-modified biochar-driven ROS generation in the rhizosphere and their role in microplastic transformation.

J Hazard Mater

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation

Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).

View Article and Find Full Text PDF

Elevated salinity amplifies polyethylene microplastic-induced soil nitrous oxide emissions.

J Hazard Mater

August 2025

Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; State Key Laboratory of Green and Efficient Development of

Microplastics (MPs) have been shown to enhance nitrous oxide (NO) emissions and soil salinization potentially amplifying this effect. This study investigated the individual and combined impacts of polyethylene (PE) MPs and salinity on NO emissions from paddy soils, while simultaneously analyzing related microbial parameters. MPs significantly increased cumulative NO emissions by 9.

View Article and Find Full Text PDF

Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.

View Article and Find Full Text PDF