Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The relationship between myosin denaturation, aggregation and water migration in Nemipterus virgatus myosin gels with different treatment processes under optimal low pressure coupled with heat treatment was investigated to clarify the molecular mechanism of water migration. With the different treatment processes, the proportion of bound water of the myosin gels increased significantly (P < 0.05). Denaturation of myosin S1 sub-fragments and α-helical unfolding during different treatment processes led to an increase in β-sheets content. These promote increased exposure of Try residues and hydrophobic groups of myosin, formation of clathrate hydrates, and reduced mobility of bound water. Furthermore, hydrophobic interactions and disulfide bonds caused the head-head and head-hinge to coalesce into a 3D honeycomb network with greater fractal dimension, less lacunarity, smaller water hole diameter and more water holes. This increased the capillary pressure experienced by the bound water, causing immobile water to migrate towards the bound water. The present study may be necessary to improve the mechanism of water migration in protein gel systems and to promote the industrial application of high pressure processing technology in surimi-based foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126815DOI Listing

Publication Analysis

Top Keywords

water migration
12
myosin gels
12
molecular mechanism
8
mechanism water
8
nemipterus virgatus
8
low pressure
8
pressure coupled
8
coupled heat
8
heat treatment
8
treatment processes
8

Similar Publications

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

The Indo-Australian Archipelago (IAA) is the world's preeminent marine biodiversity hotspot, distinguished by its exceptional species richness in tropical shallow waters. This biodiversity has spurred extensive research into its evolutionary and biogeographic origins. Two prominent theoretical frameworks dominate explanations for the IAA's biodiversity: the "centers-of hypotheses" and the "hopping hotspot hypothesis".

View Article and Find Full Text PDF

Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.

View Article and Find Full Text PDF

Water entry site and movement in permeable Sophora japonica seeds.

Plant Physiol Biochem

September 2025

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:

Seeds of Sophora japonica in Nanjing during the recommended period typically exhibit permeable seed coats. It is imperative to comprehend the water absorption characteristics of the permeable seeds, as water uptake represents a critical step in seed germination. This study employed an integrated approach combining blocking experiments, scanning electron microscopy, staining tests, and magnetic resonance imaging to investigate water entry sites and movement patterns in permeable seeds.

View Article and Find Full Text PDF

Seawater intrusion angle controls colloidal chromium migration across coastal groundwater interfaces.

J Hazard Mater

August 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The coastal mixing zone between seawater and freshwater is a critical interface for the exchange and transformation of contaminants. Despite its significance, the influence of seawater intrusion angle on contaminant transport has been largely overlooked. In this study, we combine laboratory column experiments with reactive transport modeling to investigate how varying seawater intrusion angles affect chromium (Cr) migration, particularly in colloid-facilitated forms.

View Article and Find Full Text PDF