Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We show that specific inactivation of the protein kinase Cdk1/cyclin B (Cdc28/Clb2) triggers exit from mitosis in the budding yeast Saccharomyces cerevisiae. Cells carrying the allele cdc28-as1, which makes Cdk1 (Cdc28) uniquely sensitive to the ATP analog 1NM-PP1, were arrested with spindle poisons and then treated with 1NM-PP1 to inhibit Cdk1. This caused the cells to leave mitosis and enter G1-phase as shown by initiation of rebudding (without cytokinesis), induction of mating projections ("shmoos") by α-factor, stabilization of Sic1, and degradation of Clb2. It is known that Cdk1 must be inactivated for cells to exit mitosis, but our results show that inactivation of Cdk1 is not only necessary but also sufficient to initiate the transition from mitosis to G1-phase. This result suggests a system in which to test requirements for particular gene products downstream from Cdk1 inactivation, for example, by combining cdc28-as1 with conditional mutations in the genes of interest. Using this approach, we demonstrate that protein phosphatase 1 (PPase1; Glc7 in S. cerevisiae) is required for mitotic exit and reestablishment of interphase following Cdk1 inactivation. This system could be used to test the need for other protein phosphatases downstream from Cdk1 inactivation, such as PPase 2A and Cdc14, and it could be combined with phosphoproteomics to gain information about the substrates that the various phosphatases act upon during mitotic exit.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10577-023-09736-6DOI Listing

Publication Analysis

Top Keywords

cdk1 inactivation
16
mitotic exit
12
downstream cdk1
12
protein phosphatase
8
cdk1
8
budding yeast
8
exit mitosis
8
system test
8
inactivation
6
exit
5

Similar Publications

Entry into the cell cycle requires activation of G1 cyclin-dependent kinases (CDKs) and the G1/S transcriptional program. In fission yeast, the MBF complex is the main transcription factor driving early cell-cycle gene expression. MBF-dependent transcription is activated in metaphase and repressed at the end of S phase by a feedback loop involving the cyclin Cig2 and co-repressors Nrm1 and Yox1.

View Article and Find Full Text PDF

The Greatwall kinase inhibits PP2A-B55 phosphatase activity during mitosis to stabilise critical Cdk1-driven mitotic phosphorylation. Although Greatwall represents a potential oncogene and prospective therapeutic target, our understanding of the cellular and molecular consequences of chemical Greatwall inactivation remains limited. To address this, we introduce C-604, a highly selective Greatwall inhibitor, and characterise both immediate and long-term cellular responses to the chemical attenuation of Greatwall activity.

View Article and Find Full Text PDF

The BTRR (BLM/TOP3A/RMI1/RMI2) complex resolves DNA replication and recombination intermediates to maintain genome stability. Alongside PICH, they target mitotic DNA intertwinements, known as ultrafine DNA bridges, facilitating chromosome segregation. Both BLM and PICH undergo transient mitotic hyper-phosphorylation, but the biological significance of this remains elusive.

View Article and Find Full Text PDF

KIF16B is a member of the kinesin-3 family of motor proteins, which facilitates processes such as vesicle transport, microtubule dynamics, and organelle function during mitosis. In this study, we explored the role of KIF16B in meiosis. Our findings indicate that KIF16B is involved in the meiotic G2-M transition and spindle assembly in oocytes.

View Article and Find Full Text PDF

Blocking mutant IDH1 phosphorylation triggers APC/C CDH1-dependent ubiquitination in mitotic cells.

Biochim Biophys Acta Mol Cell Res

October 2025

Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

IDH1 mutation occurs early in glioma development; thus, mutant IDH1-specific inhibitors are being developed as glioma therapy. But, recent reports suggest that mutant IDH1 inhibitors treatments result in loss of therapeutic vulnerabilities and makes cells resistant to anticancer agents. To overcome resistance, the new paradigm in drug discovery is to develop molecules that can degrade oncogenes by harnessing cellular ubiquitination machinery.

View Article and Find Full Text PDF