Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2023.108155DOI Listing

Publication Analysis

Top Keywords

organic micropollutants
12
mixture
8
reference mixture
8
risk assessment
8
background pollution
8
wwtp effluent
8
mixture risks
8
data-derived reference
4
mixture representative
4
representative european
4

Similar Publications

Significant enhancement of photoproduced reactive intermediates in liquid-like region in frozen surface water for micropollutant degradation.

Water Res

September 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).

View Article and Find Full Text PDF

The transport of micropollutants through soil is, inter alia, largely influenced by their interaction with humic acids (HAs). As chemically complex carbon molecules, HAs make part of natural organic matter and play a significant role in the retention of micropollutants in the environment. This study examines the interactions of pH-dependent HA fractions with metazachlor, paracetamol, and caffeine, using the surface plasmon resonance imaging (SPRi) method.

View Article and Find Full Text PDF

Interactions of extracellular polymeric substances with ferrihydrite and subsequent 17α-ethinylestradiol photodegradation: Impact of Fe(III)-EPS complexes formation.

J Hazard Mater

September 2025

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming 650092, China.

Microbial-derived extracellular polymeric substances (EPS) and iron minerals are ubiquitous in aquatic environments, and they can influence the fate of organic micropollutants such as 17α-ethinylestradiol (EE2). However, the interactions between EPS and iron minerals, and their influence on EE2 photodegradation, are seldom addressed in the literature. This study explored the effects of EPS derived from different aerobic or anaerobic microbials on the reductive dissolution of ferrihydrite (Fhy) and subsequent EE2 photodegradation, with emphasis on the impact of Fe-EPS complexes formation.

View Article and Find Full Text PDF

Photocatalytic Degradation of Emerging Pollutants Using Covalent Organic Frameworks.

Chem Rec

September 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.

Emerging contaminants (ECs), such as pharmaceuticals, microplastics, and endocrine disruptors, pose persistent threats to human and ecological health due to their refractory nature. Covalent organic frameworks (COFs) are attractive crystalline porous materials for photocatalytic environmental remediation. Their high surface area, tunable structures, and stability complement the sustainable and efficient nature of photocatalysis, demonstrating great potential for treating ECs.

View Article and Find Full Text PDF

The characterization of transformation products (TPs) is crucial for understanding chemical fate and potential environmental hazards. TPs form through (a)biotic processes and can be detected in environmental concentrations comparable to or even exceeding their parent compounds, indicating toxicological relevance. However, identifying them is challenging due to the complexity of transformation processes and insufficient data.

View Article and Find Full Text PDF