Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A feasible and precise method to measure ligament strain during surgical interventions could significantly enhance the quality of ligament reconstructions. However, all existing scientific approaches to measure in vivo ligament strain possess at least one significant disadvantage, such as the impairment of the anatomical structure. Seeking a more advantageous method, this paper proposes defining medical and technical requirements for a non-destructive, optical measurement technique. Furthermore, we offer a comprehensive review of current optical endoscopic techniques which could potentially be suitable for in vivo ligament strain measurement, along with the most suitable optical measurement techniques. The most promising options are rated based on the defined explicit and implicit requirements. Three methods were identified as promising candidates for a precise optical measurement of the alteration of a ligaments strain: confocal chromatic imaging, shearography, and digital image correlation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490667PMC
http://dx.doi.org/10.3390/s23177487DOI Listing

Publication Analysis

Top Keywords

optical measurement
16
ligament strain
16
vivo ligament
8
optical
5
ligament
5
strain
5
measurement ligament
4
strain opportunities
4
opportunities limitations
4
limitations intraoperative
4

Similar Publications

Purpose: To evaluate visual outcomes after bacterial keratitis (BK) and identify predictive factors for poor prognosis at a tertiary referral center in Southern California.

Methods: This is a cross-sectional retrospective review of patients' medical records with culture-positive BK at University of California Los Angeles from January 1, 2014, to December 31, 2019. Main outcome measure was change in best-corrected visual acuity (BCVA) at 12 weeks posttreatment.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF

The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.

View Article and Find Full Text PDF

Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for rapidly and reproducibly assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.

View Article and Find Full Text PDF

Background: The efficacy of subcutaneous immunotherapy (SCIT) in allergic rhinitis (AR) patients varies. Component-resolved diagnostics (CRD) may serve as a useful tool to predict therapeutic responses.

Methods: Forty-three house dust mite (HDM)-sensitized AR patients undergoing SCIT were enrolled.

View Article and Find Full Text PDF