Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Design: Retrospective cohort study.

Objective: Hounsfield units (HUs) are known to correlate with clinical outcomes, but no study has evaluated how they correlate with biomechanical computed tomography (BCT) and dual-energy x-ray absorptiometry (DXA) measurements.

Summary Of Background: Low bone mineral density (BMD) represents a major risk factor for fracture and poor outcomes following spine surgery. DXA can provide regional BMD measurements but has limitations. Opportunistic HUs provide targeted BMD estimates; however, they are not formally accepted for diagnosing osteoporosis in current guidelines. More recently, BCT analysis has emerged as a new modality endorsed by the International Society for Clinical Densitometry for assessing bone strength.

Methods: Consecutive cases from 2017 to 2022 at a single institution were reviewed for patients who underwent BCT in the thoracolumbar spine. BCT-measured vertebral strength, trabecular BMD, and the corresponding American College of Radiology Classification were recorded. DXA studies within three months of the BCT were reviewed. Pearson Correlation Coefficients were calculated, and receiver-operating characteristic curves were constructed to assess the predictive capacity of HUs. Threshold analysis was performed to identify optimal HU values for identifying osteoporosis and low BMD.

Results: Correlation analysis of 114 cases revealed a strong relationship between HUs and BCT vertebral strength ( r =0.69; P <0.0001; R2 =0.47) and trabecular BMD ( r =0.76; P <0.0001; R2 =0.58). However, DXA poorly correlated with opportunistic HUs and BCT measurements. HUs accurately predicted osteoporosis and low BMD (Osteoporosis: C =0.95, 95% CI 0.89-1.00; Low BMD: C =0.87, 95% CI 0.79-0.96). Threshold analysis revealed that 106 and 122 HUs represent optimal thresholds for detecting osteoporosis and low BMD.

Conclusion: Opportunistic HUs strongly correlated with BCT-based measures, while neither correlated strongly with DXA-based BMD measures in the thoracolumbar spine. HUs are easy to perform at no additional cost and provide accurate BMD estimates at noninstrumented vertebral levels across all American College of Radiology-designated BMD categories.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000004822DOI Listing

Publication Analysis

Top Keywords

hounsfield units
8
correlate biomechanical
8
thoracolumbar spine
8
vertebral strength
8
bct
5
opportunistic ct-based
4
ct-based hounsfield
4
units correlate
4
biomechanical measurements
4
measurements thoracolumbar
4

Similar Publications

Background: This study evaluates the quality of synthetic computed tomography (sCT) images for MR-only radiotherapy in prostate cancer using gamma analysis. A software tool, MRGamma, was developed to address challenges like the absence of electron density maps and registration uncertainties between magnetic resonance imaging (MRI) and planning CT (pCT).

Materials And Methods: Aplication developed in MATLAB assesses Hounsfield units (HU) discrepancies between CT and sCT images via 2D and 3D gamma analysis (GA).

View Article and Find Full Text PDF

The use of cementless total knee arthroplasty (TKA) has significantly increased over the past decade. However, there is no objective criteria or consensus on parameters for patient selection for cementless TKA. The purpose of this study was to develop a machine learning model based on patient and radiographic parameters that could identify patients indicated for cementless TKA.

View Article and Find Full Text PDF

Background: The incidence of osteoporosis and osteoporotic fragility fractures is increasing due to demographic changes. Therefore, early diagnosis is desirable in order to preserve bone health and prevent low-trauma fractures. Opportunistic screening for osteoporosis by frequently performed computed tomography scans could offer a potential solution.

View Article and Find Full Text PDF

Background: Photon-counting detector computed tomography (PCD CT) offers higher dose efficiency than conventional energy-integrating detector CT (EID CT), which is particularly beneficial for children. Broad evidence is missing whether frequently acquired pediatric low-dose lung imaging can be further improved using PCD CT.

Objective: To compare radiation exposure, quantitative and qualitative image quality of pediatric low-dose chest PCD CT versus EID CT examinations.

View Article and Find Full Text PDF

Background: Fat volume fraction (FVF) is an important biomarker for non-alcoholic fatty liver disease. However, current CT-based FVF quantification methods lack sufficient accuracy, particularly at lower FVF values.

Purpose: We aimed to analyze the relationship between FVF and Hounsfield units (HU) in unenhanced fatty lesions and identify optimal settings to minimize FVF quantification errors by comparing virtual monochromatic imaging (VMI) from dual-energy CT (DECT) with single-energy CT (SECT) across different patient sizes.

View Article and Find Full Text PDF