Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glutathione (GSH), the most abundant nonprotein biothiol, is a significant endogenous molecule that plays a key role in redox equilibrium in vivo and is regarded as a critical biomarker of cancer. Currently, various fluorescent probes have been designed and synthesized for imaging GSH at the cellular level in the visible range and the first near-infrared window (NIR-I, 750-900 nm). However, the application of these fluorescent probes for bioimaging and biosensing in vivo has been extremely hindered by the high biobackground and low tissue penetration. Herein, based on the self-assembly and disassembly of J-aggregation, we designed and synthesized a GSH-activatable probe MC-PSE for second near-infrared window (NIR-II) fluorescence and ratiometric photoacoustic imaging of GSH in vivo. The anionic cyanine-based MC-PSE tends to form stable J-aggregates in an aqueous solution. Upon the reaction with GSH, the J-aggregates of MC-PSE disassembled, the emission peak intensity of MC-PSE at 940 nm significantly increased by about 20 times, and the PA/PA ratio increased by 4 times within 15 min in vitro. Notably, we used MC-PSE to visualize GSH in tumor-bearing mice and to distinguish normal and tumor areas successfully by virtue of NIR-II FL and PA dual-modal imaging. The design strategy of MC-PSE provides a novel method for ratiometric photoacoustic imaging, and MC-PSE is expected to be a powerful tool for the accurate detection of GSH in cancer diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c02664 | DOI Listing |