98%
921
2 minutes
20
Synchronization phenomena on networks have attracted much attention in studies of neural, social, economic, and biological systems, yet we still lack a systematic understanding of how relative synchronizability relates to underlying network structure. Indeed, this question is of central importance to the key theme of how dynamics on networks relate to their structure more generally. We present an analytic technique to directly measure the relative synchronizability of noise-driven time-series processes on networks, in terms of the directed network structure. We consider both discrete-time autoregressive processes and continuous-time Ornstein-Uhlenbeck dynamics on networks, which can represent linearizations of nonlinear systems. Our technique builds on computation of the network covariance matrix in the space orthogonal to the synchronized state, enabling it to be more general than previous work in not requiring either symmetric (undirected) or diagonalizable connectivity matrices and allowing arbitrary self-link weights. More importantly, our approach quantifies the relative synchronization specifically in terms of the contribution of process motif (walk) structures. We demonstrate that in general the relative abundance of process motifs with convergent directed walks (including feedback and feedforward loops) hinders synchronizability. We also reveal subtle differences between the motifs involved for discrete or continuous-time dynamics. Our insights analytically explain several known general results regarding synchronizability of networks, including that small-world and regular networks are less synchronizable than random networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500263 | PMC |
http://dx.doi.org/10.1073/pnas.2303332120 | DOI Listing |
Proc Natl Acad Sci U S A
September 2023
Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany.
Synchronization phenomena on networks have attracted much attention in studies of neural, social, economic, and biological systems, yet we still lack a systematic understanding of how relative synchronizability relates to underlying network structure. Indeed, this question is of central importance to the key theme of how dynamics on networks relate to their structure more generally. We present an analytic technique to directly measure the relative synchronizability of noise-driven time-series processes on networks, in terms of the directed network structure.
View Article and Find Full Text PDFChaos
July 2018
Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628-0718, USA.
In his classical work, Kuramoto analytically described the onset of synchronization in all-to-all coupled networks of phase oscillators with random intrinsic frequencies. Specifically, he identified a critical value of the coupling strength, at which the incoherent state loses stability and a gradual build-up of coherence begins. Recently, Kuramoto's scenario was shown to hold for a large class of coupled systems on convergent families of deterministic and random graphs [Chiba and Medvedev, "The mean field analysis of the Kuramoto model on graphs.
View Article and Find Full Text PDFPhys Rev E
October 2017
Department of Mathematics, Trinity College, Hartford, Connecticut 06106, USA.
The hierarchical product of networks represents a natural tool for building large networks out of two smaller subnetworks: a primary subnetwork and a secondary subnetwork. Here we study the dynamics of diffusion and synchronization processes on hierarchical products. We apply techniques previously used for approximating the eigenvalues of the adjacency matrix to the Laplacian matrix, allowing us to quantify the effects that the primary and secondary subnetworks have on diffusion and synchronization in terms of a coupling parameter that weighs the secondary subnetwork relative to the primary subnetwork.
View Article and Find Full Text PDFNeuroimage Clin
April 2016
Dept. of Industrial Engineering, Electrical Engineering and Bioengineering Group, Institute of Biomedical Technology (ITB-CIBICAN), University of La Laguna, Tenerife, Spain.
Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2014
Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea.
To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme).
View Article and Find Full Text PDF