A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

BertNDA: A Model Based on Graph-Bert and Multi-Scale Information Fusion for ncRNA-Disease Association Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-coding RNAs (ncRNAs) are a class of RNA molecules that lack the ability to encode proteins in human cells, but play crucial roles in various biological process. Understanding the interactions between different ncRNAs and their impact on diseases can significantly contribute to diagnosis, prevention, and treatment of diseases. However, predicting tertiary interactions between ncRNAs and diseases based on structural information in multiple scales remains a challenging task. To address this challenge, we propose a method called BertNDA, aiming to predict potential relationships between miRNAs, lncRNAs, and diseases. The framework identifies the local information through connectionless subgraph, which aggregate neighbor nodes' feature. And global information is extracted by leveraging Laplace transform of graph structures and WL (Weisfeiler-Lehman) absolute role coding. Additionally, an EMLP (Element-wise MLP) structure is designed to fuse pairwise global information. The transformer-encoder is employed as the backbone of our approach, followed by a prediction-layer to output the final correlation score. Extensive experiments demonstrate that BertNDA outperforms state-of-the-art methods in prediction assignment and exhibits significant potential for various biological applications. Moreover, we develop an online prediction platform that incorporates the prediction model, providing users with an intuitive and interactive experience. Overall, our model offers an efficient, accurate, and comprehensive tool for predicting tertiary associations between ncRNAs and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3311808DOI Listing

Publication Analysis

Top Keywords

interactions ncrnas
8
predicting tertiary
8
ncrnas diseases
8
diseases
5
bertnda model
4
model based
4
based graph-bert
4
graph-bert multi-scale
4
multi-scale fusion
4
fusion ncrna-disease
4

Similar Publications