A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Aggregated gene co-expression networks predict transcription factor regulatory landscapes in grapevine. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad344DOI Listing

Publication Analysis

Top Keywords

co-expression networks
12
transcription factor
12
gene co-expression
8
networks
6
co-expression
5
aggregated gene
4
networks predict
4
predict transcription
4
factor regulatory
4
regulatory landscapes
4

Similar Publications