A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Functional conservation of microbial communities determines composition predictability in anaerobic digestion. | LitMetric

Functional conservation of microbial communities determines composition predictability in anaerobic digestion.

ISME J

Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A major challenge in managing and engineering microbial communities is determining whether and how microbial community responses to environmental alterations can be predicted and explained, especially in microorganism-driven systems. We addressed this challenge by monitoring microbial community responses to the periodic addition of the same feedstock throughout anaerobic digestion, a typical microorganism-driven system where microorganisms degrade and transform the feedstock. The immediate and delayed response consortia were assemblages of microorganisms whose abundances significantly increased on the first or third day after feedstock addition. The immediate response consortia were more predictable than the delayed response consortia and showed a reproducible and predictable order-level composition across multiple feedstock additions. These results stood in both present (16 S rRNA gene) and potentially active (16 S rRNA) microbial communities and in different feedstocks with different biodegradability and were validated by simulation modeling. Despite substantial species variability, the immediate response consortia aligned well with the reproducible CH production, which was attributed to the conservation of expressed functions by the response consortia throughout anaerobic digestion, based on metatranscriptomic data analyses. The high species variability might be attributed to intraspecific competition and contribute to biodiversity maintenance and functional redundancy. Our results demonstrate reproducible and predictable microbial community responses and their importance in stabilizing system functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579369PMC
http://dx.doi.org/10.1038/s41396-023-01505-xDOI Listing

Publication Analysis

Top Keywords

response consortia
20
microbial communities
12
anaerobic digestion
12
microbial community
12
community responses
12
delayed response
8
reproducible predictable
8
16 s rrna
8
species variability
8
microbial
6

Similar Publications