98%
921
2 minutes
20
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565248 | PMC |
http://dx.doi.org/10.1242/dev.201559 | DOI Listing |
Environ Health Perspect
June 2025
Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
Background: Developing human fetuses may be exposed to the chemical compound bisphenol A (BPA), and retinoic acid (RA) has been detected at low levels in water sources. RA signaling regulates key developmental genes and is essential for organ development, including the brain. We previously reported that RA/BPA coexposure of mouse embryonic stem cells potentiates RA signaling, which warrants further investigation.
View Article and Find Full Text PDFThe growth factor Fgf8a has been suggested to act as a morphogen during zebrafish gastrulation, spreading from a localized source to form a concentration gradient and impart positional information to cells along a tissue field. In a new paper in Development, Michael Brand and colleagues directly visualize the endogenous Fgf8a gradient in the developing zebrafish embryo. We caught up with the first author Rohit Krishnan Harish, and his PhD supervisor Michael Brand, Professor at the Center for Regenerative Therapies (CRTD) at TU Dresden.
View Article and Find Full Text PDFDevelopment
October 2023
CRTD - Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity.
View Article and Find Full Text PDFACS Chem Biol
May 2013
Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
Proteoglycans (PGs) modulate numerous signaling pathways during development through binding of their glycosaminoglycan (GAG) side chains to various signaling molecules, including fibroblast growth factors (FGFs). A majority of PGs possess two or more GAG side chains, suggesting that GAG multivalency is imperative for biological functions in vivo. However, only a few studies have examined the biological significance of GAG multivalency.
View Article and Find Full Text PDFNature
April 2013
Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.
In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes.
View Article and Find Full Text PDF