98%
921
2 minutes
20
Locoregional recurrence (LRR) is the predominant pattern of relapse after definitive breast cancer treatment. The present study aimed to develop machine learning (ML)-based radiomics models to predict LRR in patients with breast cancer by using preoperative magnetic resonance imaging (MRI) data. Data from patients with localized breast cancer that underwent preoperative MRI between January 2013 and December 2017 were collected. Propensity score matching (PSM) was performed to adjust for clinical factors between patients with and without LRR. Radiomics features were obtained from T2-weighted with and without fat-suppressed MRI and contrast-enhanced T1-weighted with fat-suppressed MRI. In the present study five ML models were designed, three base models (support vector machine, random forest, and logistic regression) and two ensemble models (voting model and stacking model) composed of the three base models, and the performance of each base model was compared with the stacking model. After PSM, 28 patients with LRR and 86 patients without LRR were included. Of these 114 patients, 80 patients were randomly selected to train the models, and the remaining 34 patients were used to evaluate the performance of the trained models. In total, 5,064 features were obtained from each patient, and 47-51 features were selected by applying variance threshold and least absolute shrinkage and selection operator. The stacking model demonstrated superior performance in area under the receiver operating characteristic curve (AUC), with an AUC of 0.78 compared to a range of 0.61 to 0.70 for the other models. An external validation study to investigate the efficacy of the stacking model of the present study was initiated and is still ongoing (Korean Radiation Oncology Group 2206).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472028 | PMC |
http://dx.doi.org/10.3892/ol.2023.14008 | DOI Listing |
BMC Cancer
September 2025
Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
Acta Pharmacol Sin
September 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.