98%
921
2 minutes
20
Background: Intact sensorimotor function of the upper extremity is essential for successfully performing activities of daily living. After a stroke, upper limb function is often compromised and requires rehabilitation. To develop appropriate rehabilitation interventions, sensitive and objective assessments are required. Current clinical measures often lack precision and technological devices (e.g. robotics) that are objective and sensitive to small changes in sensorimotor function are often unsuitable and impractical for performing home-based assessments. Here we developed a portable, tablet-based application capable of quantifying upper limb sensorimotor function after stroke. Our goal was to validate the developed application and accompanying data analysis against previously validated robotic measures of upper limb function in stroke.
Methods: Twenty individuals with stroke, twenty age-matched older controls, and twenty younger controls completed an eight-target Visually Guided Reaching (VGR) task using a Kinarm Robotic Exoskeleton and a Samsung Galaxy Tablet. Participants completed eighty trials of the VGR task on each device, where each trial consisted of making a reaching movement to one of eight pseudorandomly appearing targets. We calculated several outcome parameters capturing various aspects of sensorimotor behavior (e.g., Reaction Time, Initial Direction Error, Max Speed, and Movement Time) from each reaching movement, and our analyses compared metric consistency between devices. We used the previously validated Kinarm Standard Analysis (KSA) and a custom in-house analysis to calculate each outcome parameter.
Results: We observed strong correlations between the KSA and our custom analysis for all outcome parameters within each participant group, indicating our custom analysis accurately replicates the KSA. Minimal differences were observed for between-device comparisons (tablet vs. robot) in our outcome parameters. Additionally, we observed similar correlations for each device when comparing the Fugl-Meyer Assessment (FMA) scores of individuals with stroke to tablet-derived metrics, demonstrating that the tablet can capture clinically-based elements of upper limb impairment.
Conclusions: Tablet devices can accurately assess upper limb sensorimotor function in neurologically intact individuals and individuals with stroke. Our findings validate the use of tablets as a cost-effective and efficient assessment tool for upper-limb function after stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474703 | PMC |
http://dx.doi.org/10.1186/s12984-023-01240-6 | DOI Listing |
Neurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China. Electronic address:
Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.
Design: Secondary analysis of a randomized controlled trial.
Setting: A single rehabilitation hospital.
Early Hum Dev
September 2025
Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center; Nijmegen, the Netherlands; Department of Research, Sint Maartenskliniek, Nijmegen, the Netherlands.
Introduction: Multi Sensory Stimulation And Priming (MuSSAP) is an early upper limb training for infants at high risk of unilateral cerebral palsy (CP). MuSSAP is designed to enhance awareness of the affected upper limb facilitating initiation of goal-directed movements. This study assesses the effectiveness of an 8-week MuSSAP training on manual ability in a clinical setting.
View Article and Find Full Text PDFOphthalmol Glaucoma
September 2025
Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, Michigan. Electronic address:
Purpose: To investigate hand function and eye drop instillation success in adults with and without glaucoma.
Design: Cross-sectional pilot study.
Subjects: Adults aged ≥ 65 years with glaucoma who use eye drops daily and adults aged 65+ without glaucoma who do not regularly use eye drops.
IEEE Trans Neural Syst Rehabil Eng
September 2025
Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.
View Article and Find Full Text PDF