98%
921
2 minutes
20
Ischemic preconditioning (IPC) has been an excellent strategy for enhancing sports performance recovery, although there is still no consensus on the ideal protocol. Thus, this study aimed to evaluate the effects of IPC with different cuff pressures (low pressure, medium pressure, and high pressure) on the attenuation of neuromuscular fatigue after an isometric test protocol. And to verify whether this improvement was related to muscle oxygen saturation during the test protocol. Thirty males (18-35 years old) with experience in resistance training were allocated to three different groups: low pressure (20 mmHg), medium pressure (100 mmHg), and high pressure (190 mmHg). The individual occlusion pressure of each participant was identified using ultrasound. Each participant performed two test protocols (8 maximal isometric contractions lasting 20-s with a 10-s rest interval) in an extension chair; after the first test protocol, the participant received the IPC intervention with a low, medium, or high cuff pressure or received the noncuff intervention (randomized order). Only the medium-pressure group showed a smaller decrease in mean force change compared to the no-cuff condition (-4.40% vs. -13.10%, p=0.01, respectively), and the low- and high-pressure groups did not exhibit significant pressure differences (IPC vs. noncuff: -8.40% vs. -13.10%, p=0.11 and -9.10% vs. -14.70%, p=0.12, respectively). Muscle oxygen saturation across test protocols showed no significant differences in all IPC conditions (p>0.05). Although, IPC with medium pressure was effective at optimizing the recovery of neuromuscular performance, this improvement is not related to an increase in muscle oxygen saturation during exercise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464762 | PMC |
http://dx.doi.org/10.70252/ITYD2629 | DOI Listing |
J Vis Exp
August 2025
Department of Cardiology, First Hospital of Nanping City affiliated to Fujian Medical University;
Myocardial ischemia-reperfusion injury (MIRI) endures as a substantial impediment to the management of cardiovascular disease. The pathophysiology of MIRI is complex, involving oxidative stress, calcium overload, inflammation, and apoptosis. The NRG1/ErbB4 signaling pathway has been implicated in modulating oxidative stress responses in the heart, potentially reducing cellular damage caused by free radicals.
View Article and Find Full Text PDFCancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Ultrasonic Imaging, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.
View Article and Find Full Text PDFFront Physiol
August 2025
School of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China.
BMX Freestyle, a newly recognized Olympic discipline, demands athletes perform intricate, high-intensity maneuvers during 60-s competitive runs. Despite the sport's rapid evolution, there is a notable scarcity of scientific investigation into the distinct physiological and physical attributes of its athletes. This preliminary review synthesizes the extant literature to delineate the key physiological and physical characteristics of BMX Freestyle athletes and to identify pressing directions for future research.
View Article and Find Full Text PDFNeuroimage
September 2025
UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département R3S, Paris, France. Electronic address:
Background: Neural respiratory drive (NRD) is a clinically relevant biomarker in patients with chronic obstructive pulmonary disease (COPD). However, its analysis is challenging due to several technical considerations, including the need to obtain a stable recording over a short time period. However, a short recording duration may be inadequate to comprehensively record clinically relevant information, particularly during sleep, because NRD varies across sleep stages and over time.
View Article and Find Full Text PDF