Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19211DOI Listing

Publication Analysis

Top Keywords

red algae
12
red algal
8
red
7
red macroalgae
4
macroalgae genomic
4
genomic era
4
era rhodophyta
4
rhodophyta red
4
algae diverse
4
diverse species-rich
4

Similar Publications

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Boat noise alters behaviour of two coral reef macroinvertebrates, Lambis lambis and Tridacna maxima.

Mar Pollut Bull

September 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.

View Article and Find Full Text PDF

Agar as a natural polymer: From culture media to cutting-edge biomedical applications.

Carbohydr Polym

November 2025

Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran. Electronic address:

Agar, a natural polysaccharide derived primarily from red algae, has emerged as a versatile/biocompatible material for biomedical applications. Its unique physicochemical attributes, e.g.

View Article and Find Full Text PDF

Two Gram-stain-negative and rod-shaped bacteria, designated as RZ5 and RZ22, isolated from a red macroalgae sample, were characterized by a polyphasic approach to clarify their taxonomic position. Strain RZ5 grew at 4-33 °C (optimum, 25-28 °C), pH 6.5-8.

View Article and Find Full Text PDF

Colonization history of snow algae on Hawai'i Island.

ISME J

September 2025

Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, United States.

Red-pigmented snow algae are cold-adapted (including cryophilic) photosynthetic microbes commonly found in polar and alpine snowpacks worldwide, but their dispersal across isolated cryospheres remains poorly understood. We report the occurrence of snow algae on Maunakea, Hawai'i, the most isolated cryosphere in the world, during an unusually prolonged summer snow retention event in 2023 associated with La Niña conditions. Red-pigmented algal cells were observed in snow samples collected during this event.

View Article and Find Full Text PDF