98%
921
2 minutes
20
Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822 (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H O (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H O , suggest it has potential for biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626276 | PMC |
http://dx.doi.org/10.1002/2211-5463.13701 | DOI Listing |
Nature
September 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India.
Plants being rooted entities, are highly susceptible to diverse abiotic stresses that impair their growth and development. To encounter these adverse conditions, plants have developed several morpho-physiological and biochemical strategies. In particular, nutrients such as nitrogen, phosphorous, potassium, sulfur and iron-play an important role in enhancing stress resilience by promoting growth and regulating key signaling pathways.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Fruit Research Institute, Čačak, Serbia.
The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
Coagulant Moringa oleifera lectin (cMoL) is one of the compounds involved in the application of M. oleifera seeds for traditional water treatment methods. The present study highlights the new biotechnological potential of cMoL lectin as an antifungal agent against Cryptococcus neoformans B3501 and H99 and Cryptococcus gattii R265 strains.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDF