98%
921
2 minutes
20
Animal detection through DNA present in environmental samples (eDNA) is a valuable tool for detecting rare species, that are difficult to observe and monitor. eDNA-based tools are underpinned by molecular evolutionary principles, key to devising tools to efficiently single out a targeted species from an environmental sample. Here, we present a comprehensive review of the use of eDNA-based methods for the detection of targeted animal species, such as rare, endangered, or invasive species, through the analysis of 549 publications (2008-2022). Aquatic ecosystems have been the most surveyed, in particular, freshwaters (74 %), and to a less extent marine (14 %) and terrestrial systems (10 %). Vertebrates, in particular, fish (38 %), and endangered species, have been the focus of most of these studies, and Cytb and COI are the most employed markers. Among invertebrates, assays have been mainly designed for Mollusca and Crustacea species (21 %), in particular, to target invasive species, and COI the most employed marker. Targeted molecular approaches, in particular qPCR, have been the most adopted (75 %), while eDNA metabarcoding has been rarely used to target single or few species (approx. 6 %). However, less attention has been given in these studies to the effects of environmental factors on the amount of shed DNA, the differential amount of shed DNA among species, or the sensitivity of the markers developed, which may impact the design of the assays, particularly to warrant the required detection level and avoid false negatives and positives. The accuracy of the assays will also depend on the availability of genetic data and vouchered tissue or DNA samples from closely related species to assess both marker and primers' specificity. In addition, eDNA-based assays developed for a particular species may have to be refined for use in a new geographic area taking into account site-specific populations, as well as any intraspecific variation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166675 | DOI Listing |
Genome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFNat Food
September 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Agriculturally driven habitat degradation and destruction is the biggest threat to global biodiversity. Yet the impact of different foods and where they are produced on species extinction risks, and the mitigation potential of different interventions, remain poorly quantified. Here we link the LIFE biodiversity metric-a high-resolution global layer describing the marginal impact of land use on extinctions of ~30,000 vertebrate species-with food consumption and production data and provenance modelling.
View Article and Find Full Text PDFProtoplasma
September 2025
Vavilov Institute of General Genetics RAS, Moscow, Russia.
Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDF